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Preface

This book may be downloaded as a free PDF at openintro.org.

We hope readers will take away three ideas from this book in addition to forming a foun-
dation of statistical thinking and methods.

(1) Statistics is an applied field with a wide range of practical applications.

(2) You don’t have to be a math guru to learn from interesting, real data.

(3) Data are messy, and statistical tools are imperfect. However, when you understand
the strengths and weaknesses of these tools, you can use them to learn interesting
things about the world.

Textbook overview

The chapters of this book are as follows:

1. Introduction to data. Data structures, variables, summaries, graphics, and basic
data collection techniques.

2. Foundations for inference. Case studies are used to introduce the ideas of statistical
inference with randomization and simulations. The content leads into the standard
parametric framework, with techniques reinforced in the subsequent chapters.1 It is
also possible to begin with this chapter and introduce tools from Chapter 1 as they
are needed.

3. Inference for categorical data. Inference for proportions using the normal and chi-
square distributions, as well as simulation and randomization techniques.

4. Inference for numerical data. Inference for one or two sample means using the t dis-
tribution, and also comparisons of many means using ANOVA. A special section for
bootstrapping is provided at the end of the chapter.

5. Introduction to linear regression. An introduction to regression with two variables.
Most of this chapter could be covered immediately after Chapter 1.

6. Multiple and logistic regression. An introduction to multiple regression and logis-
tic regression for an accelerated course.

Appendix A. Probability. An introduction to probability is provided as an optional ref-
erence. Exercises and additional probability content may be found in Chapter 2 of
OpenIntro Statistics at openintro.org. Instructor feedback suggests that probabil-
ity, if discussed, is best introduced at the very start or very end of the course.

1Instructors who have used similar approaches in the past may notice the absence of the bootstrap.
Our investigation of the bootstrap has shown that there are many misunderstandings about its robustness.
For this reason, we postpone the introduction of this technique.

v

http://www.openintro.org
http://www.openintro.org


vi CONTENTS

Examples, exercises, and additional appendices

Examples and guided practice exercises throughout the textbook may be identified by their
distinctive bullets:

 Example 0.1 Large filled bullets signal the start of an example.

Full solutions to examples are provided and often include an accompanying table or
figure.⊙
Guided Practice 0.2 Large empty bullets signal to readers that an exercise has
been inserted into the text for additional practice and guidance. Solutions for all
guided practice exercises are provided in footnotes.2

Exercises at the end of each chapter are useful for practice or homework assignments.
Many of these questions have multiple parts, and solutions to odd-numbered exercises can
be found in Appendix B.

Probability tables for the normal, t, and chi-square distributions are in Appendix C,
and PDF copies of these tables are also available from openintro.org.

OpenIntro, online resources, and getting involved

OpenIntro is an organization focused on developing free and affordable education materi-
als. We encourage anyone learning or teaching statistics to visit openintro.org and get
involved. We also provide many free online resources, including free course software. Data
sets for this textbook are available on the website and through a companion R package.3

All of these resources are free, and we want to be clear that anyone is welcome to use these
online tools and resources with or without this textbook as a companion.

We value your feedback. If there is a part of the project you especially like or think
needs improvement, we want to hear from you. You may find our contact information on
the title page of this book or on the About section of openintro.org.

Acknowledgements
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you will join us in extending a thank you to all those who volunteer with OpenIntro.

The authors would especially like to thank Andrew Bray and Meenal Patel for their
involvement and contributions to this textbook. We are also grateful to Andrew Bray, Ben
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who have helped improve OpenIntro resources through their feedback.
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2Full solutions are located down here in the footnote!
3Diez DM, Barr CD, Çetinkaya-Rundel M. 2012. openintro: OpenIntro data sets and supplement

functions. http://cran.r-project.org/web/packages/openintro.
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Chapter 1

Introduction to data

Scientists seek to answer questions using rigorous methods and careful observations. These
observations – collected from the likes of field notes, surveys, and experiments – form the
backbone of a statistical investigation and are called data. Statistics is the study of how
best to collect, analyze, and draw conclusions from data. It is helpful to put statistics in
the context of a general process of investigation:

1. Identify a question or problem.

2. Collect relevant data on the topic.

3. Analyze the data.

4. Form a conclusion.

Statistics as a subject focuses on making stages 2-4 objective, rigorous, and efficient.
That is, statistics has three primary components: How best can we collect data? How
should it be analyzed? And what can we infer from the analysis?

The topics scientists investigate are as diverse as the questions they ask. However,
many of these investigations can be addressed with a small number of data collection
techniques, analytic tools, and fundamental concepts in statistical inference. This chapter
provides a glimpse into these and other themes we will encounter throughout the rest of
the book. We introduce the basic principles of each branch and learn some tools along
the way. We will encounter applications from other fields, some of which are not typically
associated with science but nonetheless can benefit from statistical study.

1.1 Case study: using stents to prevent strokes

Section 1.1 introduces a classic challenge in statistics: evaluating the efficacy of a medical
treatment. Terms in this section, and indeed much of this chapter, will all be revisited
later in the text. The plan for now is simply to get a sense of the role statistics can play in
practice.

In this section we will consider an experiment that studies effectiveness of stents in
treating patients at risk of stroke.1 Stents are small mesh tubes that are placed inside

1Chimowitz MI, Lynn MJ, Derdeyn CP, et al. 2011. Stenting versus Aggressive Medical Therapy for
Intracranial Arterial Stenosis. New England Journal of Medicine 365:993-1003. http://www.nejm.org/doi/
full/10.1056/NEJMoa1105335. NY Times article reporting on the study: http://www.nytimes.com/2011/
09/08/health/research/08stent.html.

1

http://www.nejm.org/doi/full/10.1056/NEJMoa1105335
http://www.nejm.org/doi/full/10.1056/NEJMoa1105335
http://www.nytimes.com/2011/09/08/health/research/08stent.html
http://www.nytimes.com/2011/09/08/health/research/08stent.html


2 CHAPTER 1. INTRODUCTION TO DATA

narrow or weak arteries to assist in patient recovery after cardiac events and reduce the
risk of an additional heart attack or death. Many doctors have hoped that there would be
similar benefits for patients at risk of stroke. We start by writing the principal question
the researchers hope to answer:

Does the use of stents reduce the risk of stroke?

The researchers who asked this question collected data on 451 at-risk patients. Each
volunteer patient was randomly assigned to one of two groups:

Treatment group. Patients in the treatment group received a stent and medical
management. The medical management included medications, management of risk
factors, and help in lifestyle modification.

Control group. Patients in the control group received the same medical manage-
ment as the treatment group but did not receive stents.

Researchers randomly assigned 224 patients to the treatment group and 227 to the control
group. In this study, the control group provides a reference point against which we can
measure the medical impact of stents in the treatment group.

Researchers studied the effect of stents at two time points: 30 days after enrollment
and 365 days after enrollment. The results of 5 patients are summarized in Table 1.1.
Patient outcomes are recorded as “stroke” or “no event”.

Patient group 0-30 days 0-365 days
1 treatment no event no event
2 treatment stroke stroke
3 treatment no event no event
...

...
...

450 control no event no event
451 control no event no event

Table 1.1: Results for five patients from the stent study.

Considering data from each patient individually would be a long, cumbersome path
towards answering the original research question. Instead, a statistical analysis allows us
to consider all of the data at once. Table 1.2 summarizes the raw data in a more helpful
way. In this table, we can quickly see what happened over the entire study. For instance,
to identify the number of patients in the treatment group who had a stroke within 30 days,
we look on the left-side of the table at the intersection of the treatment and stroke: 33.

0-30 days 0-365 days
stroke no event stroke no event

treatment 33 191 45 179
control 13 214 28 199
Total 46 405 73 378

Table 1.2: Descriptive statistics for the stent study.
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⊙
Guided Practice 1.1 Of the 224 patients in the treatment group, 45 had a stroke
by the end of the first year. Using these two numbers, compute the proportion of
patients in the treatment group who had a stroke by the end of their first year.
(Answers to all in-text exercises are provided in footnotes.)2

We can compute summary statistics from the table. A summary statistic is a single
number summarizing a large amount of data.3 For instance, the primary results of the
study after 1 year could be described by two summary statistics: the proportion of people
who had a stroke in the treatment and control groups.

Proportion who had a stroke in the treatment (stent) group: 45/224 = 0.20 = 20%.

Proportion who had a stroke in the control group: 28/227 = 0.12 = 12%.

These two summary statistics are useful in looking for differences in the groups, and we are
in for a surprise: an additional 8% of patients in the treatment group had a stroke! This is
important for two reasons. First, it is contrary to what doctors expected, which was that
stents would reduce the rate of strokes. Second, it leads to a statistical question: do the
data show a “real” difference due to the treatment?

This second question is subtle. Suppose you flip a coin 100 times. While the chance
a coin lands heads in any given coin flip is 50%, we probably won’t observe exactly 50
heads. This type of fluctuation is part of almost any type of data generating process. It is
possible that the 8% difference in the stent study is due to this natural variation. However,
the larger the difference we observe (for a particular sample size), the less believable it is
that the difference is due to chance. So what we are really asking is the following: is the
difference so large that we should reject the notion that it was due to chance?

While we haven’t yet covered statistical tools to fully address this question, we can
comprehend the conclusions of the published analysis: there was compelling evidence of
harm by stents in this study of stroke patients.

Be careful: do not generalize the results of this study to all patients and all stents.
This study looked at patients with very specific characteristics who volunteered to be a
part of this study and who may not be representative of all stroke patients. In addition,
there are many types of stents and this study only considered the self-expanding Wingspan
stent (Boston Scientific). However, this study does leave us with an important lesson: we
should keep our eyes open for surprises.

1.2 Data basics

Effective presentation and description of data is a first step in most analyses. This section
introduces one structure for organizing data as well as some terminology that will be used
throughout this book.

1.2.1 Observations, variables, and data matrices

Table 1.3 displays rows 1, 2, 3, and 50 of a data set concerning 50 emails received in 2012.
These observations will be referred to as the email50 data set, and they are a random
sample from a larger data set that we will see in Section 1.7.

2The proportion of the 224 patients who had a stroke within 365 days: 45/224 = 0.20.
3Formally, a summary statistic is a value computed from the data. Some summary statistics are more

useful than others.
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spam num char line breaks format number

1 no 21,705 551 html small
2 no 7,011 183 html big
3 yes 631 28 text none
...

...
...

...
...

...
50 no 15,829 242 html small

Table 1.3: Four rows from the email50 data matrix.

variable description

spam Specifies whether the message was spam
num char The number of characters in the email
line breaks The number of line breaks in the email (not including text wrapping)
format Indicates if the email contained special formatting, such as bolding, tables,

or links, which would indicate the message is in HTML format
number Indicates whether the email contained no number, a small number (under

1 million), or a large number

Table 1.4: Variables and their descriptions for the email50 data set.

Each row in the table represents a single email or case.4 The columns represent char-
acteristics, called variables, for each of the emails. For example, the first row represents
email 1, which is not spam, contains 21,705 characters, 551 line breaks, is written in HTML
format, and contains only small numbers.

In practice, it is especially important to ask clarifying questions to ensure important
aspects of the data are understood. For instance, it is always important to be sure we
know what each variable means and the units of measurement. Descriptions of all five
email variables are given in Table 1.4.

The data in Table 1.3 represent a data matrix, which is a common way to organize
data. Each row of a data matrix corresponds to a unique case, and each column corresponds
to a variable. A data matrix for the stroke study introduced in Section 1.1 is shown in
Table 1.1 on page 2, where the cases were patients and there were three variables recorded
for each patient.

Data matrices are a convenient way to record and store data. If another individual
or case is added to the data set, an additional row can be easily added. Similarly, another
column can be added for a new variable.⊙

Guided Practice 1.2 We consider a publicly available data set that summarizes
information about the 3,143 counties in the United States, and we call this the county
data set. This data set includes information about each county: its name, the state
where it resides, its population in 2000 and 2010, per capita federal spending, poverty
rate, and five additional characteristics. How might these data be organized in a data
matrix? Reminder: look in the footnotes for answers to in-text exercises.5

Seven rows of the county data set are shown in Table 1.5, and the variables are summarized
in Table 1.6. These data were collected from the US Census website.6

4A case is also sometimes called a unit of observation or an observational unit.
5Each county may be viewed as a case, and there are eleven pieces of information recorded for each

case. A table with 3,143 rows and 11 columns could hold these data, where each row represents a county
and each column represents a particular piece of information.

6http://quickfacts.census.gov/qfd/index.html

http://quickfacts.census.gov/qfd/index.html
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all variables

numerical categorical

continuous discrete regular
categorical ordinal

Figure 1.7: Breakdown of variables into their respective types.

1.2.2 Types of variables

Examine the fed spend, pop2010, state, and smoking ban variables in the county data
set. Each of these variables is inherently different from the other three yet many of them
share certain characteristics.

First consider fed spend, which is said to be a numerical variable since it can take
a wide range of numerical values, and it is sensible to add, subtract, or take averages with
those values. On the other hand, we would not classify a variable reporting telephone area
codes as numerical since their average, sum, and difference have no clear meaning.

The pop2010 variable is also numerical, although it seems to be a little different than
fed spend. This variable of the population count can only be a whole non-negative number
(0, 1, 2, ...). For this reason, the population variable is said to be discrete since it can
only take numerical values with jumps. On the other hand, the federal spending variable
is said to be continuous.

The variable state can take up to 51 values after accounting for Washington, DC: AL,
..., and WY. Because the responses themselves are categories, state is called a categorical
variable,7 and the possible values are called the variable’s levels.

Finally, consider the smoking ban variable, which describes the type of county-wide
smoking ban and takes a value none, partial, or comprehensive in each county. This
variable seems to be a hybrid: it is a categorical variable but the levels have a natural
ordering. A variable with these properties is called an ordinal variable. To simplify
analyses, any ordinal variables in this book will be treated as categorical variables.

 Example 1.3 Data were collected about students in a statistics course. Three
variables were recorded for each student: number of siblings, student height, and
whether the student had previously taken a statistics course. Classify each of the
variables as continuous numerical, discrete numerical, or categorical.

The number of siblings and student height represent numerical variables. Because
the number of siblings is a count, it is discrete. Height varies continuously, so it is a
continuous numerical variable. The last variable classifies students into two categories
– those who have and those who have not taken a statistics course – which makes
this variable categorical.⊙
Guided Practice 1.4 Consider the variables group and outcome (at 30 days) from
the stent study in Section 1.1. Are these numerical or categorical variables?8

7Sometimes also called a nominal variable.
8There are only two possible values for each variable, and in both cases they describe categories. Thus,

each is a categorical variable.
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Figure 1.8: A scatterplot showing fed spend against poverty. Owsley
County of Kentucky, with a poverty rate of 41.5% and federal spending of
$21.50 per capita, is highlighted.

1.2.3 Relationships between variables

Many analyses are motivated by a researcher looking for a relationship between two or
more variables. A social scientist may like to answer some of the following questions:

(1) Is federal spending, on average, higher or lower in counties with high rates of poverty?

(2) If homeownership is lower than the national average in one county, will the percent
of multi-unit structures in that county likely be above or below the national average?

(3) Which counties have a higher average income: those that enact one or more smoking
bans or those that do not?

To answer these questions, data must be collected, such as the county data set shown
in Table 1.5. Examining summary statistics could provide insights for each of the three
questions about counties. Additionally, graphs can be used to visually summarize data and
are useful for answering such questions as well.

Scatterplots are one type of graph used to study the relationship between two nu-
merical variables. Figure 1.8 compares the variables fed spend and poverty. Each point
on the plot represents a single county. For instance, the highlighted dot corresponds to
County 1088 in the county data set: Owsley County, Kentucky, which had a poverty rate
of 41.5% and federal spending of $21.50 per capita. The dense cloud in the scatterplot sug-
gests a relationship between the two variables: counties with a high poverty rate also tend
to have slightly more federal spending. We might brainstorm as to why this relationship
exists and investigate each idea to determine which is the most reasonable explanation.⊙

Guided Practice 1.5 Examine the variables in the email50 data set, which are de-
scribed in Table 1.4 on page 4. Create two questions about the relationships between
these variables that are of interest to you.9

9Two sample questions: (1) Intuition suggests that if there are many line breaks in an email then there
would also tend to be many characters: does this hold true? (2) Is there a connection between whether an
email format is plain text (versus HTML) and whether it is a spam message?



8 CHAPTER 1. INTRODUCTION TO DATA

P
er

ce
nt

 o
f H

om
eo

w
ne

rs
hi

p

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

Percent of Units in Multi−Unit Structures

Figure 1.9: A scatterplot of the homeownership rate versus the percent of
units that are in multi-unit structures for all 3,143 counties. Interested
readers may find an image of this plot with an additional third variable,
county population, presented at www.openintro.org/stat/down/MHP.png.

The fed spend and poverty variables are said to be associated because the plot shows
a discernible pattern. When two variables show some connection with one another, they are
called associated variables. Associated variables can also be called dependent variables
and vice-versa.

 Example 1.6 The relationship between the homeownership rate and the percent
of units in multi-unit structures (e.g. apartments, condos) is visualized using a scat-
terplot in Figure 1.9. Are these variables associated?

It appears that the larger the fraction of units in multi-unit structures, the lower the
homeownership rate. Since there is some relationship between the variables, they are
associated.

Because there is a downward trend in Figure 1.9 – counties with more units in multi-
unit structures are associated with lower homeownership – these variables are said to be
negatively associated. A positive association is shown in the relationship between
the poverty and fed spend variables represented in Figure 1.8, where counties with higher
poverty rates tend to receive more federal spending per capita.

If two variables are not associated, then they are said to be independent. That is,
two variables are independent if there is no evident relationship between the two.

Associated or independent, not both
A pair of variables are either related in some way (associated) or not (independent).
No pair of variables is both associated and independent.

http://www.openintro.org/stat/down/MHP.png
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1.3 Overview of data collection principles

The first step in conducting research is to identify topics or questions that are to be inves-
tigated. A clearly laid out research question is helpful in identifying what subjects or cases
should be studied and what variables are important. It is also important to consider how
data are collected so that they are reliable and help achieve the research goals.

1.3.1 Populations and samples

Consider the following three research questions:

1. What is the average mercury content in swordfish in the Atlantic Ocean?

2. Over the last 5 years, what is the average time to complete a degree for Duke under-
graduate students?

3. Does a new drug reduce the number of deaths in patients with severe heart disease?

Each research question refers to a target population. In the first question, the target
population is all swordfish in the Atlantic ocean, and each fish represents a case. It is
usually too expensive to collect data for every case in a population. Instead, a sample
is taken. A sample represents a subset of the cases and is often a small fraction of the
population. For instance, 60 swordfish (or some other number) in the population might
be selected, and this sample data may be used to provide an estimate of the population
average and answer the research question.⊙

Guided Practice 1.7 For the second and third questions above, identify the target
population and what represents an individual case.10

1.3.2 Anecdotal evidence

Consider the following possible responses to the three research questions:

1. A man on the news got mercury poisoning from eating swordfish, so the average
mercury concentration in swordfish must be dangerously high.

2. I met two students who took more than 7 years to graduate from Duke, so it must
take longer to graduate at Duke than at many other colleges.

3. My friend’s dad had a heart attack and died after they gave him a new heart disease
drug, so the drug must not work.

Each conclusion is based on data. However, there are two problems. First, the data only
represent one or two cases. Second, and more importantly, it is unclear whether these cases
are actually representative of the population. Data collected in this haphazard fashion are
called anecdotal evidence.

10(2) Notice that the first question is only relevant to students who complete their degree; the average
cannot be computed using a student who never finished her degree. Thus, only Duke undergraduate
students who have graduated in the last five years represent cases in the population under consideration.
Each such student would represent an individual case. (3) A person with severe heart disease represents a
case. The population includes all people with severe heart disease.
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Figure 1.10: In February 2010, some
media pundits cited one large snow
storm as evidence against global
warming. As comedian Jon Stewart
pointed out, “It’s one storm, in one
region, of one country.”
—————————–
February 10th, 2010.

Anecdotal evidence
Be careful of data collected haphazardly. Such evidence may be true and verifiable,
but it may only represent extraordinary cases.

Anecdotal evidence typically is composed of unusual cases that we recall based on
their striking characteristics. For instance, we are more likely to remember the two people
we met who took 7 years to graduate than the six others who graduated in four years.
Instead of looking at the most unusual cases, we should examine a sample of many cases
that represent the population.

1.3.3 Sampling from a population

We might try to estimate the time to graduation for Duke undergraduates in the last 5
years by collecting a sample of students. All graduates in the last 5 years represent the
population, and graduates who are selected for review are collectively called the sample.
In general, we always seek to randomly select a sample from a population. The most
basic type of random selection is equivalent to how raffles are conducted. For example, in
selecting graduates, we could write each graduate’s name on a raffle ticket and draw 100
tickets. The selected names would represent a random sample of 100 graduates.

Why pick a sample randomly? Why not just pick a sample by hand? Consider the
following scenario.

 Example 1.8 Suppose we ask a student who happens to be majoring in nutrition
to select several graduates for the study. What kind of students do you think she
might collect? Do you think her sample would be representative of all graduates?

Perhaps she would pick a disproportionate number of graduates from health-related
fields. Or perhaps her selection would be well-representative of the population. When
selecting samples by hand, we run the risk of picking a biased sample, even if that
bias is unintentional or difficult to discern.
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all graduates

sample

Figure 1.11: In this graphic, five graduates are randomly selected from the
population to be included in the sample.

all graduates

sample

graduates from
health−related fields

Figure 1.12: Instead of sampling from all graduates equally, a nutrition
major might inadvertently pick graduates with health-related majors dis-
proportionately often.

If someone was permitted to pick and choose exactly which graduates were included
in the sample, it is entirely possible that the sample could be skewed to that person’s inter-
ests, which may be entirely unintentional. This introduces bias into a sample. Sampling
randomly helps resolve this problem. The most basic random sample is called a simple
random sample, which is equivalent to using a raffle to select cases. This means that
each case in the population has an equal chance of being included and there is no implied
connection between the cases in the sample.

The act of taking a simple random sample helps minimize bias, however, bias can crop
up in other ways. Even when people are picked at random, e.g. for surveys, caution must
be exercised if the non-response is high. For instance, if only 30% of the people randomly
sampled for a survey actually respond, and it is unclear whether the respondents are rep-
resentative of the entire population, the survey might suffer from non-response bias.

Another common downfall is a convenience sample, where individuals who are easily
accessible are more likely to be included in the sample. For instance, if a political survey is
done by stopping people walking in the Bronx, it will not represent all of New York City.
It is often difficult to discern what sub-population a convenience sample represents.⊙

Guided Practice 1.9 We can easily access ratings for products, sellers, and com-
panies through websites. These ratings are based only on those people who go out of
their way to provide a rating. If 50% of online reviews for a product are negative, do
you think this means that 50% of buyers are dissatisfied with the product?11

11Answers will vary. From our own anecdotal experiences, we believe people tend to rant more about
products that fell below expectations than rave about those that perform as expected. For this reason, we
suspect there is a negative bias in product ratings on sites like Amazon. However, since our experiences
may not be representative, we also keep an open mind.
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population of interest

sample

population actually
sampled

Figure 1.13: Due to the possibility of non-response, surveys studies may
only reach a certain group within the population. It is difficult, and often
impossible, to completely fix this problem.

1.3.4 Explanatory and response variables

Consider the following question from page 7 for the county data set:

(1) Is federal spending, on average, higher or lower in counties with high rates of poverty?

If we suspect poverty might affect spending in a county, then poverty is the explanatory
variable and federal spending is the response variable in the relationship.12 If there are
many variables, it may be possible to consider a number of them as explanatory variables.

TIP: Explanatory and response variables
To identify the explanatory variable in a pair of variables, identify which of the two
is suspected of affecting the other.

might affectexplanatory
variable

response
variable

Caution: association does not imply causation
Labeling variables as explanatory and response does not guarantee the relationship
between the two is actually causal, even if there is an association identified between
the two variables. We use these labels only to keep track of which variable we
suspect affects the other.

In some cases, there is no explanatory or response variable. Consider the following
question from page 7:

(2) If homeownership is lower than the national average in one county, will the percent
of multi-unit structures in that county likely be above or below the national average?

It is difficult to decide which of these variables should be considered the explanatory and
response variable, i.e. the direction is ambiguous, so no explanatory or response labels are
suggested here.

12Sometimes the explanatory variable is called the independent variable and the response variable
is called the dependent variable. However, this becomes confusing since a pair of variables might be
independent or dependent, so we avoid this language.
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1.3.5 Introducing observational studies and experiments

There are two primary types of data collection: observational studies and experiments.
Researchers perform an observational study when they collect data in a way that

does not directly interfere with how the data arise. For instance, researchers may collect
information via surveys, review medical or company records, or follow a cohort of many
similar individuals to study why certain diseases might develop. In each of these situations,
researchers merely observe what happens. In general, observational studies can provide evi-
dence of a naturally occurring association between variables, but they cannot by themselves
show a causal connection.

When researchers want to investigate the possibility of a causal connection, they con-
duct an experiment. Usually there will be both an explanatory and a response variable.
For instance, we may suspect administering a drug will reduce mortality in heart attack
patients over the following year. To check if there really is a causal connection between
the explanatory variable and the response, researchers will collect a sample of individuals
and split them into groups. The individuals in each group are assigned a treatment. When
individuals are randomly assigned to a group, the experiment is called a randomized ex-
periment. For example, each heart attack patient in the drug trial could be randomly
assigned, perhaps by flipping a coin, into one of two groups: the first group receives a
placebo (fake treatment) and the second group receives the drug. See the case study in
Section 1.1 for another example of an experiment, though that study did not employ a
placebo.

TIP: association 6= causation
In a data analysis, association does not imply causation, and causation can only be
inferred from a randomized experiment.

1.4 Observational studies and sampling strategies

1.4.1 Observational studies

Generally, data in observational studies are collected only by monitoring what occurs,
while experiments require the primary explanatory variable in a study be assigned for each
subject by the researchers.

Making causal conclusions based on experiments is often reasonable. However, making
the same causal conclusions based on observational data can be treacherous and is not rec-
ommended. Thus, observational studies are generally only sufficient to show associations.⊙

Guided Practice 1.10 Suppose an observational study tracked sunscreen use and
skin cancer, and it was found that the more sunscreen someone used, the more likely
the person was to have skin cancer. Does this mean sunscreen causes skin cancer?13

Some previous research tells us that using sunscreen actually reduces skin cancer risk,
so maybe there is another variable that can explain this hypothetical association between
sunscreen usage and skin cancer. One important piece of information that is absent is sun
exposure. If someone is out in the sun all day, she is more likely to use sunscreen and more
likely to get skin cancer. Exposure to the sun is unaccounted for in the simple investigation.

13No. See the paragraph following the exercise for an explanation.
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sun exposure

use sunscreen skin cancer?

Sun exposure is what is called a confounding variable,14 which is a variable that
is correlated with both the explanatory and response variables. While one method to
justify making causal conclusions from observational studies is to exhaust the search for
confounding variables, there is no guarantee that all confounding variables can be examined
or measured.

In the same way, the county data set is an observational study with confounding
variables, and its data cannot easily be used to make causal conclusions.⊙

Guided Practice 1.11 Figure 1.9 shows a negative association between the home-
ownership rate and the percentage of multi-unit structures in a county. However, it
is unreasonable to conclude that there is a causal relationship between the two vari-
ables. Suggest one or more other variables that might explain the relationship in
Figure 1.9. 15

Observational studies come in two forms: prospective and retrospective studies. A
prospective study identifies individuals and collects information as events unfold. For
instance, medical researchers may identify and follow a group of similar individuals over
many years to assess the possible influences of behavior on cancer risk. One example
of such a study is The Nurses Health Study, started in 1976 and expanded in 1989.16

This prospective study recruits registered nurses and then collects data from them using
questionnaires. Retrospective studies collect data after events have taken place, e.g.
researchers may review past events in medical records. Some data sets, such as county,
may contain both prospectively- and retrospectively-collected variables. Local governments
prospectively collect some variables as events unfolded (e.g. retails sales) while the federal
government retrospectively collected others during the 2010 census (e.g. county popula-
tion).

1.4.2 Three sampling methods (special topic)

Almost all statistical methods are based on the notion of implied randomness. If observa-
tional data are not collected in a random framework from a population, results from these
statistical methods are not reliable. Here we consider three random sampling techniques:
simple, stratified, and cluster sampling. Figure 1.14 provides a graphical representation of
these techniques.

Simple random sampling is probably the most intuitive form of random sampling.
Consider the salaries of Major League Baseball (MLB) players, where each player is a
member of one of the league’s 30 teams. To take a simple random sample of 120 baseball
players and their salaries from the 2010 season, we could write the names of that season’s

14Also called a lurking variable, confounding factor, or a confounder.
15Answers will vary. Population density may be important. If a county is very dense, then a larger

fraction of residents may live in multi-unit structures. Additionally, the high density may contribute to
increases in property value, making homeownership infeasible for many residents.

16http://www.channing.harvard.edu/nhs/

http://www.channing.harvard.edu/nhs/
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Figure 1.14: Examples of simple random, stratified, and cluster sampling.
In the top panel, simple random sampling was used to randomly select
the 18 cases. In the middle panel, stratified sampling was used: cases were
grouped into strata, and then simple random sampling was employed within
each stratum. In the bottom panel, cluster sampling was used, where data
were binned into nine clusters, and three of the clusters were randomly
selected.
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828 players onto slips of paper, drop the slips into a bucket, shake the bucket around until
we are sure the names are all mixed up, then draw out slips until we have the sample of
120 players. In general, a sample is referred to as “simple random” if each case in the
population has an equal chance of being included in the final sample and knowing that a
case is included in a sample does not provide useful information about which other cases
are included.

Stratified sampling is a divide-and-conquer sampling strategy. The population is
divided into groups called strata. The strata are chosen so that similar cases are grouped
together, then a second sampling method, usually simple random sampling, is employed
within each stratum. In the baseball salary example, the teams could represent the strata;
some teams have a lot more money (we’re looking at you, Yankees). Then we might
randomly sample 4 players from each team for a total of 120 players.

Stratified sampling is especially useful when the cases in each stratum are very similar
with respect to the outcome of interest. The downside is that analyzing data from a
stratified sample is a more complex task than analyzing data from a simple random sample.
The analysis methods introduced in this book would need to be extended to analyze data
collected using stratified sampling.

 Example 1.12 Why would it be good for cases within each stratum to be very
similar?

We might get a more stable estimate for the subpopulation in a stratum if the cases
are very similar. These improved estimates for each subpopulation will help us build
a reliable estimate for the full population.

In cluster sampling, we group observations into clusters, then randomly sample some
of the clusters. Sometimes cluster sampling can be a more economical technique than the
alternatives. Also, unlike stratified sampling, cluster sampling is most helpful when there
is a lot of case-to-case variability within a cluster but the clusters themselves don’t look
very different from one another. For example, if neighborhoods represented clusters, then
this sampling method works best when the neighborhoods are very diverse. A downside of
cluster sampling is that more advanced analysis techniques are typically required, though
the methods in this book can be extended to handle such data.

 Example 1.13 Suppose we are interested in estimating the malaria rate in a densely
tropical portion of rural Indonesia. We learn that there are 30 villages in that part of
the Indonesian jungle, each more or less similar to the next. What sampling method
should be employed?

A simple random sample would likely draw individuals from all 30 villages, which
could make data collection extremely expensive. Stratified sampling would be a
challenge since it is unclear how we would build strata of similar individuals. However,
cluster sampling seems like a very good idea. We might randomly select a small
number of villages. This would probably reduce our data collection costs substantially
in comparison to a simple random sample and would still give us helpful information.

Another technique called multistage sampling is similar to cluster sampling, except
that we take a simple random sample within each selected cluster. For instance, if we
sampled neighborhoods using cluster sampling, we would next sample a subset of homes
within each selected neighborhood if we were using multistage sampling.
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1.5 Experiments

Studies where the researchers assign treatments to cases are called experiments. When
this assignment includes randomization, e.g. using a coin flip to decide which treatment
a patient receives, it is called a randomized experiment. Randomized experiments are
fundamentally important when trying to show a causal connection between two variables.

1.5.1 Principles of experimental design

Randomized experiments are generally built on four principles.

Controlling. Researchers assign treatments to cases, and they do their best to control
any other differences in the groups. For example, when patients take a drug in pill
form, some patients take the pill with only a sip of water while others may have it
with an entire glass of water. To control for the effect of water consumption, a doctor
may ask all patients to drink a 12 ounce glass of water with the pill.

Randomization. Researchers randomize patients into treatment groups to account for
variables that cannot be controlled. For example, some patients may be more suscep-
tible to a disease than others due to their dietary habits. Randomizing patients into
the treatment or control group helps even out such differences, and it also prevents
accidental bias from entering the study.

Replication. The more cases researchers observe, the more accurately they can estimate
the effect of the explanatory variable on the response. In a single study, we replicate
by collecting a sufficiently large sample. Additionally, a group of scientists may
replicate an entire study to verify an earlier finding.

Blocking. Researchers sometimes know or suspect that variables, other than the treat-
ment, influence the response. Under these circumstances, they may first group in-
dividuals based on this variable and then randomize cases within each block to the
treatment groups. This strategy is often referred to as blocking. For instance, if
we are looking at the effect of a drug on heart attacks, we might first split patients
into low-risk and high-risk blocks, then randomly assign half the patients from each
block to the control group and the other half to the treatment group, as shown in
Figure 1.15. This strategy ensures each treatment group has an equal number of
low-risk and high-risk patients.

It is important to incorporate the first three experimental design principles into any
study, and this book describes methods for analyzing data from such experiments. Blocking
is a slightly more advanced technique, and statistical methods in this book may be extended
to analyze data collected using blocking.

1.5.2 Reducing bias in human experiments

Randomized experiments are the gold standard for data collection, but they do not ensure
an unbiased perspective into the cause and effect relationships in all cases. Human studies
are perfect examples where bias can unintentionally arise. Here we reconsider a study where
a new drug was used to treat heart attack patients.17 In particular, researchers wanted to
know if the drug reduced deaths in patients.

17Anturane Reinfarction Trial Research Group. 1980. Sulfinpyrazone in the prevention of sudden death
after myocardial infarction. New England Journal of Medicine 302(5):250-256.
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Figure 1.15: Blocking using a variable depicting patient risk. Patients are
first divided into low-risk and high-risk blocks, then each block is evenly
divided into the treatment groups using randomization. This strategy en-
sures an equal representation of patients in each treatment group from both
the low-risk and high-risk categories.
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These researchers designed a randomized experiment because they wanted to draw
causal conclusions about the drug’s effect. Study volunteers18 were randomly placed into
two study groups. One group, the treatment group, received the drug. The other group,
called the control group, did not receive any drug treatment.

Put yourself in the place of a person in the study. If you are in the treatment group,
you are given a fancy new drug that you anticipate will help you. On the other hand, a
person in the other group doesn’t receive the drug and sits idly, hoping her participation
doesn’t increase her risk of death. These perspectives suggest there are actually two effects:
the one of interest is the effectiveness of the drug, and the second is an emotional effect
that is difficult to quantify.

Researchers aren’t usually interested in the emotional effect, which might bias the
study. To circumvent this problem, researchers do not want patients to know which group
they are in. When researchers keep the patients uninformed about their treatment, the
study is said to be blind. But there is one problem: if a patient doesn’t receive a treatment,
she will know she is in the control group. The solution to this problem is to give fake
treatments to patients in the control group. A fake treatment is called a placebo, and
an effective placebo is the key to making a study truly blind. A classic example of a
placebo is a sugar pill that is made to look like the actual treatment pill. Often times, a
placebo results in a slight but real improvement in patients. This effect has been dubbed
the placebo effect.

The patients are not the only ones who should be blinded: doctors and researchers
can accidentally bias a study. When a doctor knows a patient has been given the real
treatment, she might inadvertently give that patient more attention or care than a patient
that she knows is on the placebo. To guard against this bias, which again has been found to
have a measurable effect in some instances, most modern studies employ a double-blind
setup where doctors or researchers who interact with patients are, just like the patients,
unaware of who is or is not receiving the treatment.19

⊙
Guided Practice 1.14 Look back to the study in Section 1.1 where researchers
were testing whether stents were effective at reducing strokes in at-risk patients. Is
this an experiment? Was the study blinded? Was it double-blinded?20

1.6 Examining numerical data

This section introduces techniques for exploring and summarizing numerical variables, and
the email50 and county data sets from Section 1.2 provide rich opportunities for exam-
ples. Recall that outcomes of numerical variables are numbers on which it is reasonable to
perform basic arithmetic operations. For example, the pop2010 variable, which represents
the populations of counties in 2010, is numerical since we can sensibly discuss the difference
or ratio of the populations in two counties. On the other hand, area codes and zip codes
are not numerical.

18Human subjects are often called patients, volunteers, or study participants.
19There are always some researchers in the study who do know which patients are receiving which

treatment. However, they do not interact with the study’s patients and do not tell the blinded health care
professionals who is receiving which treatment.

20The researchers assigned the patients into their treatment groups, so this study was an experiment.
However, the patients could distinguish what treatment they received, so this study was not blind. The
study could not be double-blind since it was not blind.
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1.6.1 Scatterplots for paired data

A scatterplot provides a case-by-case view of data for two numerical variables. In Fig-
ure 1.8 on page 7, a scatterplot was used to examine how federal spending and poverty were
related in the county data set. Another scatterplot is shown in Figure 1.16, comparing the
number of line breaks (line breaks) and number of characters (num char) in emails for
the email50 data set. In any scatterplot, each point represents a single case. Since there
are 50 cases in email50, there are 50 points in Figure 1.16.
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Figure 1.16: A scatterplot of line breaks versus num char for the email50
data.

To put the number of characters in perspective, this paragraph has 363 characters.
Looking at Figure 1.16, it seems that some emails are incredibly long! Upon further in-
vestigation, we would actually find that most of the long emails use the HTML format,
which means most of the characters in those emails are used to format the email rather
than provide text.⊙

Guided Practice 1.15 What do scatterplots reveal about the data, and how might
they be useful?21

 Example 1.16 Consider a new data set of 54 cars with two variables: vehicle price
and weight.22 A scatterplot of vehicle price versus weight is shown in Figure 1.17.
What can be said about the relationship between these variables?

The relationship is evidently nonlinear, as highlighted by the dashed line. This is
different from previous scatterplots we’ve seen, such as Figure 1.8 on page 7 and
Figure 1.16, which show relationships that are very linear.⊙
Guided Practice 1.17 Describe two variables that would have a horseshoe shaped
association in a scatterplot.23

21Answers may vary. Scatterplots are helpful in quickly spotting associations between variables, whether
those associations represent simple or more complex relationships.

22Subset of data from http://www.amstat.org/publications/jse/v1n1/datasets.lock.html
23Consider the case where your vertical axis represents something “good” and your horizontal axis

represents something that is only good in moderation. Health and water consumption fit this description
since water becomes toxic when consumed in excessive quantities.

http://www.amstat.org/publications/jse/v1n1/datasets.lock.html
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Figure 1.17: A scatterplot of price versus weight for 54 cars.

1.6.2 Dot plots and the mean

Sometimes two variables is one too many: only one variable may be of interest. In these
cases, a dot plot provides the most basic of displays. A dot plot is a one-variable scatter-
plot; an example using the number of characters from 50 emails is shown in Figure 1.18.
A stacked version of this dot plot is shown in Figure 1.19.

Number of Characters (in thousands)

0 10 20 30 40 50 60

Figure 1.18: A dot plot of num char for the email50 data set.

The mean, sometimes called the average, is a common way to measure the center
of a distribution of data. To find the mean number of characters in the 50 emails, we
add up all the character counts and divide by the number of emails. For computational
convenience, the number of characters is listed in the thousands and rounded to the first
decimal.

x̄ =
21.7 + 7.0 + · · ·+ 15.8

50
= 11.6 (1.18)

The sample mean is often labeled x̄, and the letter x is being used as a generic placeholder for x̄
sample
mean

the variable of interest, num char. The sample mean is shown as a triangle in Figures 1.18
and 1.19.
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Number of Characters (in thousands)
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Figure 1.19: A stacked dot plot of num char for the email50 data set.

Mean
The sample mean of a numerical variable is the sum of all of the observations
divided by the number of observations:

x̄ =
x1 + x2 + · · ·+ xn

n
(1.19)

where x1, x2, . . . , xn represent the n observed values.n
sample size ⊙

Guided Practice 1.20 Examine Equations (1.18) and (1.19) above. What does
x1 correspond to? And x2? Can you infer a general meaning to what xi might
represent?24

⊙
Guided Practice 1.21 What was n in this sample of emails?25

The email50 data set is a sample from a larger population of emails that were received
in January and March. We could compute a mean for this population in the same way
as the sample mean. However, there is a difference in notation: the population mean has
a special label: µ. The symbol µ is the Greek letter mu and represents the average ofµ

population
mean

all observations in the population. Sometimes a subscript, such as x, is used to represent
which variable the population mean refers to, e.g. µx.

 Example 1.22 The average number of characters across all emails can be estimated
using the sample data. Based on the sample of 50 emails, what would be a reasonable
estimate of µx, the mean number of characters in all emails in the email data set?
(Recall that email50 is a sample from email.)

The sample mean, 11,600, may provide a reasonable estimate of µx. While this
number will not be perfect, it provides a point estimate of the population mean.
In Chapter 2 and beyond, we will develop tools to characterize the accuracy of point
estimates, and we will find that point estimates based on larger samples tend to be
more accurate than those based on smaller samples.

24x1 corresponds to the number of characters in the first email in the sample (21.7, in thousands), x2
to the number of characters in the second email (7.0, in thousands), and xi corresponds to the number of
characters in the ith email in the data set.

25The sample size was n = 50.
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 Example 1.23 We might like to compute the average income per person in the US.
To do so, we might first think to take the mean of the per capita incomes from the
3,143 counties in the county data set. What would be a better approach?

The county data set is special in that each county actually represents many individual
people. If we were to simply average across the income variable, we would be treating
counties with 5,000 and 5,000,000 residents equally in the calculations. Instead, we
should compute the total income for each county, add up all the counties’ totals,
and then divide by the number of people in all the counties. If we completed these
steps with the county data, we would find that the per capita income for the US is
$27,348.43. Had we computed the simple mean of per capita income across counties,
the result would have been just $22,504.70!

Example 1.23 used what is called a weighted mean, which will not be a key topic
in this textbook. However, we have provided an online supplement on weighted means for
interested readers:

http://www.openintro.org/stat/down/supp/wtdmean.pdf

1.6.3 Histograms and shape

Dot plots show the exact value of each observation. This is useful for small data sets, but
they can become hard to read with larger samples. Rather than showing the value of each
observation, think of the value as belonging to a bin. For example, in the email50 data set,
we create a table of counts for the number of cases with character counts between 0 and
5,000, then the number of cases between 5,000 and 10,000, and so on. Observations that
fall on the boundary of a bin (e.g. 5,000) are allocated to the lower bin. This tabulation is
shown in Table 1.20. These binned counts are plotted as bars in Figure 1.21 into what is
called a histogram, which resembles the stacked dot plot shown in Figure 1.19.

Characters
(in thousands)

0-5 5-10 10-15 15-20 20-25 25-30 · · · 55-60 60-65

Count 19 12 6 2 3 5 · · · 0 1

Table 1.20: The counts for the binned num char data.

Histograms provide a view of the data density. Higher bars represent where the
data are relatively more dense. For instance, there are many more emails between 0 and
10,000 characters than emails between 10,000 and 20,000 characters in the data set. The
bars make it easy to see how the density of the data changes relative to the number of
characters.

Histograms are especially convenient for describing the shape of the data distribution.
Figure 1.21 shows that most emails have a relatively small number of characters, while
fewer emails have a very large number of characters. When data trail off to the right in
this way and have a longer right tail, the shape is said to be right skewed.26

Data sets with the reverse characteristic – a long, thin tail to the left – are said to be
left skewed. We also say that such a distribution has a long left tail. Data sets that show
roughly equal trailing off in both directions are called symmetric.

26Other ways to describe data that are skewed to the right: skewed to the right, skewed to the
high end, or skewed to the positive end.

http://www.openintro.org/stat/down/supp/wtdmean.pdf
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Figure 1.21: A histogram of num char. This distribution is very strongly
skewed to the right.

Long tails to identify skew
When data trail off in one direction, the distribution has a long tail. If a distri-
bution has a long left tail, it is left skewed. If a distribution has a long right tail,
it is right skewed.

⊙
Guided Practice 1.24 Take a look at the dot plots in Figures 1.18 and 1.19. Can
you see the skew in the data? Is it easier to see the skew in this histogram or the dot
plots?27

⊙
Guided Practice 1.25 Besides the mean (since it was labeled), what can you see
in the dot plots that you cannot see in the histogram?28

In addition to looking at whether a distribution is skewed or symmetric, histograms
can be used to identify modes. A mode is represented by a prominent peak in the distri-
bution.29 There is only one prominent peak in the histogram of num char.

Figure 1.22 shows histograms that have one, two, or three prominent peaks. Such
distributions are called unimodal, bimodal, and multimodal, respectively. Any distri-
bution with more than 2 prominent peaks is called multimodal. Notice that there was one
prominent peak in the unimodal distribution with a second less prominent peak that was
not counted since it only differs from its neighboring bins by a few observations.⊙

Guided Practice 1.26 Figure 1.21 reveals only one prominent mode in the number
of characters. Is the distribution unimodal, bimodal, or multimodal?30

27The skew is visible in all three plots, though the flat dot plot is the least useful. The stacked dot plot
and histogram are helpful visualizations for identifying skew.

28Character counts for individual emails.
29Another definition of mode, which is not typically used in statistics, is the value with the most

occurrences. It is common to have no observations with the same value in a data set, which makes this
other definition useless for many real data sets.

30Unimodal. Remember that uni stands for 1 (think unicycles). Similarly, bi stands for 2 (think
bicycles). (We’re hoping a multicycle will be invented to complete this analogy.)
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Figure 1.22: Counting only prominent peaks, the distributions are (left to
right) unimodal, bimodal, and multimodal.

⊙
Guided Practice 1.27 Height measurements of young students and adult teachers
at a K-3 elementary school were taken. How many modes would you anticipate in
this height data set?31

TIP: Looking for modes
Looking for modes isn’t about finding a clear and correct answer about the number
of modes in a distribution, which is why prominent is not rigorously defined in this
book. The important part of this examination is to better understand your data
and how it might be structured.

1.6.4 Variance and standard deviation

The mean is used to describe the center of a data set, but the variability in the data is also
important. Here, we introduce two measures of variability: the variance and the standard
deviation. Both of these are very useful in data analysis, even though the formulas are
a bit tedious to calculate by hand. The standard deviation is the easier of the two to
conceptually understand, and it roughly describes how far away the typical observation is
from the mean.

We call the distance of an observation from its mean its deviation. Below are the
deviations for the 1st, 2nd, 3rd, and 50th observations in the num char variable. For com-
putational convenience, the number of characters is listed in the thousands and rounded to
the first decimal.

x1 − x̄ = 21.7− 11.6 = 10.1

x2 − x̄ = 7.0− 11.6 = −4.6

x3 − x̄ = 0.6− 11.6 = −11.0

...

x50 − x̄ = 15.8− 11.6 = 4.2

31There might be two height groups visible in the data set: one of the students and one of the adults.
That is, the data are probably bimodal.
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Number of Characters (in thousands), x = 11,600, sx = 13,130

 −1.5  11.6  24.7  37.8  50.9  64.0

Figure 1.23: In the num char data, 41 of the 50 emails (82%) are within
1 standard deviation of the mean, and 47 of the 50 emails (94%) are within
2 standard deviations. Usually about 70% of the data are within 1 standard
deviation of the mean and 95% are within 2 standard deviations, though
this rule of thumb is less accurate for skewed data, as shown in this example.

If we square these deviations and then take an average, the result is about equal to the
sample variance, denoted by s2:s2

sample
variance

s2 =
10.12 + (−4.6)2 + (−11.0)2 + · · ·+ 4.22

50− 1

=
102.01 + 21.16 + 121.00 + · · ·+ 17.64

49
= 172.44

We divide by n − 1, rather than dividing by n, when computing the variance; you need
not worry about this mathematical nuance for the material in this textbook. Notice that
squaring the deviations does two things. First, it makes large values much larger, seen by
comparing 10.12, (−4.6)2, (−11.0)2, and 4.22. Second, it gets rid of any negative signs.

The standard deviation is the square root of the variance:

s =
√

172.44 = 13.13

The standard deviation of the number of characters in an email is about 13.13 thousand.

s
sample
standard
deviation

A subscript of x may be added to the variance and standard deviation, i.e. s2
x and sx, as a

reminder that these are the variance and standard deviation of the observations represented
by x1, x2, ..., xn. The x subscript is usually omitted when it is clear which data the variance
or standard deviation is referencing.

Variance and standard deviation
The variance is roughly the average squared distance from the mean. The standard
deviation is the square root of the variance and describes how close the data are
to the mean.

Formulas and methods used to compute the variance and standard deviation for a
population are similar to those used for a sample.32 However, like the mean, the population
values have special symbols: σ2 for the variance and σ for the standard deviation. Theσ2

population
variance

σ
population
standard
deviation

symbol σ is the Greek letter sigma.

32The only difference is that the population variance has a division by n instead of n− 1.
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−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

Figure 1.24: Three very different population distributions with the same
mean µ = 0 and standard deviation σ = 1.

TIP: standard deviation describes variability
Focus on the conceptual meaning of the standard deviation as a descriptor of vari-
ability rather than the formulas. Usually 70% of the data will be within one stan-
dard deviation of the mean and about 95% will be within two standard deviations.
However, as seen in Figures 1.23 and 1.24, these percentages are not strict rules.

⊙
Guided Practice 1.28 On page 23, the concept of shape of a distribution was
introduced. A good description of the shape of a distribution should include modality
and whether the distribution is symmetric or skewed to one side. Using Figure 1.24
as an example, explain why such a description is important.33

 Example 1.29 Describe the distribution of the num char variable using the his-
togram in Figure 1.21 on page 24. The description should incorporate the center,
variability, and shape of the distribution, and it should also be placed in context: the
number of characters in emails. Also note any especially unusual cases.

The distribution of email character counts is unimodal and very strongly skewed to
the high end. Many of the counts fall near the mean at 11,600, and most fall within
one standard deviation (13,130) of the mean. There is one exceptionally long email
with about 65,000 characters.

In practice, the variance and standard deviation are sometimes used as a means to
an end, where the “end” is being able to accurately estimate the uncertainty associated
with a sample statistic. For example, in Chapter 2 we will use the variance and standard
deviation to assess how close the sample mean is to the population mean.

33Figure 1.24 shows three distributions that look quite different, but all have the same mean, variance,
and standard deviation. Using modality, we can distinguish between the first plot (bimodal) and the
last two (unimodal). Using skewness, we can distinguish between the last plot (right skewed) and the
first two. While a picture, like a histogram, tells a more complete story, we can use modality and shape
(symmetry/skew) to characterize basic information about a distribution.
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1.6.5 Box plots, quartiles, and the median

A box plot summarizes a data set using five statistics while also plotting unusual observa-
tions. Figure 1.25 provides a vertical dot plot alongside a box plot of the num char variable
from the email50 data set.
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Figure 1.25: A vertical dot plot next to a labeled box plot for the number
of characters in 50 emails. The median (6,890), splits the data into the
bottom 50% and the top 50%, marked in the dot plot by horizontal dashes
and open circles, respectively.

The first step in building a box plot is drawing a dark line denoting the median,
which splits the data in half. Figure 1.25 shows 50% of the data falling below the median
(dashes) and other 50% falling above the median (open circles). There are 50 character
counts in the data set (an even number) so the data are perfectly split into two groups of 25.
We take the median in this case to be the average of the two observations closest to the
50th percentile: (6,768+7,012)/2 = 6,890. When there are an odd number of observations,
there will be exactly one observation that splits the data into two halves, and in this case
that observation is the median (no average needed).

Median: the number in the middle
If the data are ordered from smallest to largest, the median is the observation
right in the middle. If there are an even number of observations, there will be two
values in the middle, and the median is taken as their average.

The second step in building a box plot is drawing a rectangle to represent the middle
50% of the data. The total length of the box, shown vertically in Figure 1.25, is called
the interquartile range (IQR, for short). It, like the standard deviation, is a measure of
variability in data. The more variable the data, the larger the standard deviation and IQR.
The two boundaries of the box are called the first quartile (the 25th percentile, i.e. 25%
of the data fall below this value) and the third quartile (the 75th percentile), and these
are often labeled Q1 and Q3, respectively.
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Interquartile range (IQR)
The IQR is the length of the box in a box plot. It is computed as

IQR = Q3 −Q1

where Q1 and Q3 are the 25th and 75th percentiles.

⊙
Guided Practice 1.30 What percent of the data fall between Q1 and the median?
What percent is between the median and Q3?34

Extending out from the box, the whiskers attempt to capture the data outside of
the box, however, their reach is never allowed to be more than 1.5× IQR.35 They capture
everything within this reach. In Figure 1.25, the upper whisker does not extend to the
last three points, which are beyond Q3 + 1.5 × IQR, and so it extends only to the last
point below this limit. The lower whisker stops at the lowest value, 33, since there is no
additional data to reach; the lower whisker’s limit is not shown in the figure because the
plot does not extend down to Q1 − 1.5× IQR. In a sense, the box is like the body of the
box plot and the whiskers are like its arms trying to reach the rest of the data.

Any observation that lies beyond the whiskers is labeled with a dot. The purpose of
labeling these points – instead of just extending the whiskers to the minimum and maximum
observed values – is to help identify any observations that appear to be unusually distant
from the rest of the data. Unusually distant observations are called outliers. In this case,
it would be reasonable to classify the emails with character counts of 41,623, 42,793, and
64,401 as outliers since they are numerically distant from most of the data.

Outliers are extreme
An outlier is an observation that is extreme relative to the rest of the data.

TIP: Why it is important to look for outliers
Examination of data for possible outliers serves many useful purposes, including

1. Identifying strong skew in the distribution.

2. Identifying data collection or entry errors. For instance, we re-examined the
email purported to have 64,401 characters to ensure this value was accurate.

3. Providing insight into interesting properties of the data.

⊙
Guided Practice 1.31 The observation 64,401, an outlier, was found to be an
accurate observation. What would such an observation suggest about the nature of
character counts in emails?36

⊙
Guided Practice 1.32 Using Figure 1.25, estimate the following values for num

char in the email50 data set: (a) Q1, (b) Q3, and (c) IQR.37

34Since Q1 and Q3 capture the middle 50% of the data and the median splits the data in the middle,
25% of the data fall between Q1 and the median, and another 25% falls between the median and Q3.

35While the choice of exactly 1.5 is arbitrary, it is the most commonly used value for box plots.
36That occasionally there may be very long emails.
37These visual estimates will vary a little from one person to the next: Q1 ≈ 3,000, Q3 ≈ 15,000,

IQR = Q3 −Q1 ≈ 12,000. (The true values: Q1 = 2,536, Q3 = 15,411, IQR = 12,875.)
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1.6.6 Robust statistics

How are the sample statistics of the num char data set affected by the observation, 64,401?
What would have happened if this email wasn’t observed? What would happen to these
summary statistics if the observation at 64,401 had been even larger, say 150,000? These
scenarios are plotted alongside the original data in Figure 1.26, and sample statistics are
computed under each scenario in Table 1.27.

Number of Characters (in thousands)

0 50 100 150

Original

Drop 64,401

64,401 to 150,000

Figure 1.26: Dot plots of the original character count data and two modified
data sets.

robust not robust
scenario median IQR x̄ s
original num char data 6,890 12,875 11,600 13,130
drop 66,924 observation 6,768 11,702 10,521 10,798
move 66,924 to 150,000 6,890 12,875 13,310 22,434

Table 1.27: A comparison of how the median, IQR, mean (x̄), and standard
deviation (s) change when extreme observations are present.

⊙
Guided Practice 1.33 (a) Which is more affected by extreme observations, the
mean or median? Table 1.27 may be helpful. (b) Is the standard deviation or IQR
more affected by extreme observations?38

The median and IQR are called robust estimates because extreme observations have
little effect on their values. The mean and standard deviation are much more affected by
changes in extreme observations.

 Example 1.34 The median and IQR do not change much under the three scenarios
in Table 1.27. Why might this be the case?

The median and IQR are only sensitive to numbers near Q1, the median, and Q3.
Since values in these regions are relatively stable – there aren’t large jumps between
observations – the median and IQR estimates are also quite stable.⊙
Guided Practice 1.35 The distribution of vehicle prices tends to be right skewed,
with a few luxury and sports cars lingering out into the right tail. If you were
searching for a new car and cared about price, should you be more interested in the
mean or median price of vehicles sold, assuming you are in the market for a regular
car?39

38(a) Mean is affected more. (b) Standard deviation is affected more. Complete explanations are
provided in the material following Guided Practice 1.33.

39Buyers of a “regular car” should be concerned about the median price. High-end car sales can drasti-
cally inflate the mean price while the median will be more robust to the influence of those sales.
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1.6.7 Transforming data (special topic)

When data are very strongly skewed, we sometimes transform them so they are easier to
model. Consider the histogram of salaries for Major League Baseball players’ salaries from
2010, which is shown in Figure 1.28(a).

Salary (millions of dollars)

0 10 20 30

0

500

(a)

loge(Salary), where Salary is in millions USD

−1 0 1 2 3

0

100

200

300

(b)

Figure 1.28: (a) Histogram of MLB player salaries for 2010, in millions of
dollars. (b) Histogram of the log-transformed MLB player salaries for 2010.

 Example 1.36 The histogram of MLB player salaries is useful in that we can see
the data are extremely skewed and centered (as gauged by the median) at about $1
million. What isn’t useful about this plot?

Most of the data are collected into one bin in the histogram and the data are so
strongly skewed that many details in the data are obscured.

There are some standard transformations that are often applied when much of the
data cluster near zero (relative to the larger values in the data set) and all observations are
positive. A transformation is a rescaling of the data using a function. For instance, a plot
of the natural logarithm40 of player salaries results in a new histogram in Figure 1.28(b).
Transformed data are sometimes easier to work with when applying statistical models
because the transformed data are much less skewed and outliers are usually less extreme.

Transformations can also be applied to one or both variables in a scatterplot. A
scatterplot of the line breaks and num char variables is shown in Figure 1.29(a), which
was earlier shown in Figure 1.16. We can see a positive association between the variables
and that many observations are clustered near zero. In Chapter 5, we might want to use
a straight line to model the data. However, we’ll find that the data in their current state
cannot be modeled very well. Figure 1.29(b) shows a scatterplot where both the line

breaks and num char variables have been transformed using a log (base e) transformation.
While there is a positive association in each plot, the transformed data show a steadier
trend, which is easier to model than the untransformed data.

Transformations other than the logarithm can be useful, too. For instance, the square
root (

√
original observation) and inverse ( 1

original observation ) are used by statisticians. Com-
mon goals in transforming data are to see the data structure differently, reduce skew, assist
in modeling, or straighten a nonlinear relationship in a scatterplot.

40Statisticians often write the natural logarithm as log. You might be more familiar with it being written
as ln.



32 CHAPTER 1. INTRODUCTION TO DATA

lin
e_

br
ea

ks

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●●

● ●

num_char

(a)

lo
g e

(li
ne

_b
re

ak
s)

2

3

4

5

6

7

−3 −2 −1 0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

loge(num_char)

(b)

Figure 1.29: (a) Scatterplot of line breaks against num char for 50 emails.
(b) A scatterplot of the same data but where each variable has been log-
transformed.

1.6.8 Mapping data (special topic)

The county data set offers many numerical variables that we could plot using dot plots,
scatterplots, or box plots, but these miss the true nature of the data. Rather, when we
encounter geographic data, we should map it using an intensity map, where colors are
used to show higher and lower values of a variable. Figures 1.30 and 1.31 shows intensity
maps for federal spending per capita (fed spend), poverty rate in percent (poverty),
homeownership rate in percent (homeownership), and median household income (med
income). The color key indicates which colors correspond to which values. Note that the
intensity maps are not generally very helpful for getting precise values in any given county,
but they are very helpful for seeing geographic trends and generating interesting research
questions.

 Example 1.37 What interesting features are evident in the fed spend and poverty

intensity maps?

The federal spending intensity map shows substantial spending in the Dakotas and
along the central-to-western part of the Canadian border, which may be related to
the oil boom in this region. There are several other patches of federal spending,
such as a vertical strip in eastern Utah and Arizona and the area where Colorado,
Nebraska, and Kansas meet. There are also seemingly random counties with very high
federal spending relative to their neighbors. If we did not cap the federal spending
range at $18 per capita, we would actually find that some counties have extremely
high federal spending while there is almost no federal spending in the neighboring
counties. These high-spending counties might contain military bases, companies with
large government contracts, or other government facilities with many employees.

Poverty rates are evidently higher in a few locations. Notably, the deep south shows
higher poverty rates, as does the southwest border of Texas. The vertical strip of
eastern Utah and Arizona, noted above for its higher federal spending, also appears
to have higher rates of poverty (though generally little correspondence is seen between
the two variables). High poverty rates are evident in the Mississippi flood plains a
little north of New Orleans and also in a large section of Kentucky and West Virginia.



1.6. EXAMINING NUMERICAL DATA 33

0

9

>18

(a)

0

12

>25

(b)

Figure 1.30: (a) Map of federal spending (dollars per capita). (b) Intensity
map of poverty rate (percent).
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Figure 1.31: (a) Intensity map of homeownership rate (percent). (b) Inten-
sity map of median household income ($1000s).



1.7. CONSIDERING CATEGORICAL DATA 35

⊙
Guided Practice 1.38 What interesting features are evident in the med income

intensity map?41

1.7 Considering categorical data

Like numerical data, categorical data can also be organized and analyzed. This section
introduces tables and other basic tools for categorical data that are used throughout this
book. The email50 data set represents a sample from a larger email data set called email.
This larger data set contains information on 3,921 emails. In this section we will examine
whether the presence of numbers, small or large, in an email provides any useful value in
classifying email as spam or not spam.

1.7.1 Contingency tables and bar plots

Table 1.32 summarizes two variables: spam and number. Recall that number is a categorical
variable that describes whether an email contains no numbers, only small numbers (values
under 1 million), or at least one big number (a value of 1 million or more). A table that
summarizes data for two categorical variables in this way is called a contingency table.
Each value in the table represents the number of times a particular combination of variable
outcomes occurred. For example, the value 149 corresponds to the number of emails in
the data set that are spam and had no number listed in the email. Row and column
totals are also included. The row totals provide the total counts across each row (e.g.
149 + 168 + 50 = 367), and column totals are total counts down each column.

A table for a single variable is called a frequency table. Table 1.33 is a frequency
table for the number variable. If we replaced the counts with percentages or proportions,
the table would be called a relative frequency table.

number

none small big Total
spam 149 168 50 367

spam
not spam 400 2659 495 3554
Total 549 2827 545 3921

Table 1.32: A contingency table for spam and number.

none small big Total
549 2827 545 3921

Table 1.33: A frequency table for the number variable.

A bar plot is a common way to display a single categorical variable. The left panel of
Figure 1.34 shows a bar plot for the number variable. In the right panel, the counts are
converted into proportions (e.g. 549/3921 = 0.140 for none).

41Note: answers will vary. There is a very strong correspondence between high earning and metropolitan
areas. You might look for large cities you are familiar with and try to spot them on the map as dark spots.
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Figure 1.34: Two bar plots of number. The left panel shows the counts,
and the right panel shows the proportions in each group.

1.7.2 Row and column proportions

Table 1.35 shows the row proportions for Table 1.32. The row proportions are computed
as the counts divided by their row totals. The value 149 at the intersection of spam and
none is replaced by 149/367 = 0.406, i.e. 149 divided by its row total, 367. So what does
0.406 represent? It corresponds to the proportion of spam emails in the sample that do not
have any numbers.

none small big Total
spam 149/367 = 0.406 168/367 = 0.458 50/367 = 0.136 1.000
not spam 400/3554 = 0.113 2657/3554 = 0.748 495/3554 = 0.139 1.000
Total 549/3921 = 0.140 2827/3921 = 0.721 545/3921 = 0.139 1.000

Table 1.35: A contingency table with row proportions for the spam and
number variables.

A contingency table of the column proportions is computed in a similar way, where
each column proportion is computed as the count divided by the corresponding column
total. Table 1.36 shows such a table, and here the value 0.271 indicates that 27.1% of
emails with no numbers were spam. This rate of spam is much higher than emails with
only small numbers (5.9%) or big numbers (9.2%). Because these spam rates vary between
the three levels of number (none, small, big), this provides evidence that the spam and
number variables are associated.

none small big Total

spam 149/549 = 0.271 168/2827 = 0.059 50/545 = 0.092 367/3921 = 0.094
not spam 400/549 = 0.729 2659/2827 = 0.941 495/545 = 0.908 3684/3921 = 0.906

Total 1.000 1.000 1.000 1.000

Table 1.36: A contingency table with column proportions for the spam and
number variables.
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We could also have checked for an association between spam and number in Table 1.35
using row proportions. When comparing these row proportions, we would look down
columns to see if the fraction of emails with no numbers, small numbers, and big num-
bers varied from spam to not spam.⊙

Guided Practice 1.39 What does 0.458 represent in Table 1.35? What does 0.059
represent in Table 1.36?42

⊙
Guided Practice 1.40 What does 0.139 at the intersection of not spam and big

represent in Table 1.35? What does 0.908 represent in the Table 1.36?43

 Example 1.41 Data scientists use statistics to filter spam from incoming email
messages. By noting specific characteristics of an email, a data scientist may be able
to classify some emails as spam or not spam with high accuracy. One of those char-
acteristics is whether the email contains no numbers, small numbers, or big numbers.
Another characteristic is whether or not an email has any HTML content. A con-
tingency table for the spam and format variables from the email data set are shown
in Table 1.37. Recall that an HTML email is an email with the capacity for special
formatting, e.g. bold text. In Table 1.37, which would be more helpful to someone
hoping to classify email as spam or regular email: row or column proportions?

Such a person would be interested in how the proportion of spam changes within each
email format. This corresponds to column proportions: the proportion of spam in
plain text emails and the proportion of spam in HTML emails.

If we generate the column proportions, we can see that a higher fraction of plain text
emails are spam (209/1195 = 17.5%) than compared to HTML emails (158/2726 =
5.8%). This information on its own is insufficient to classify an email as spam or not
spam, as over 80% of plain text emails are not spam. Yet, when we carefully combine
this information with many other characteristics, such as number and other variables,
we stand a reasonable chance of being able to classify some email as spam or not
spam. This is a topic we will return to in Chapter 6.

text HTML Total
spam 209 158 367
not spam 986 2568 3554
Total 1195 2726 3921

Table 1.37: A contingency table for spam and format.

Example 1.41 points out that row and column proportions are not equivalent. Before
settling on one form for a table, it is important to consider each to ensure that the most
useful table is constructed.⊙

Guided Practice 1.42 Look back to Tables 1.35 and 1.36. Which would be more
useful to someone hoping to identify spam emails using the number variable?44

420.458 represents the proportion of spam emails that had a small number. 0.058 represents the fraction
of emails with small numbers that are spam.

430.139 represents the fraction of non-spam email that had a big number. 0.908 represents the fraction
of emails with big numbers that are non-spam emails.

44The column proportions in Table 1.36 will probably be most useful, which makes it easier to see that
emails with small numbers are spam about 5.9% of the time (relatively rare). We would also see that about
27.1% of emails with no numbers are spam, and 9.2% of emails with big numbers are spam.
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Figure 1.38: (a) Segmented bar plot for numbers found in emails, where the
counts have been further broken down by spam. (b) Standardized version
of Figure (a).

1.7.3 Segmented bar and mosaic plots

Contingency tables using row or column proportions are especially useful for examining
how two categorical variables are related. Segmented bar and mosaic plots provide a way
to visualize the information in these tables.

A segmented bar plot is a graphical display of contingency table information. For
example, a segmented bar plot representing Table 1.36 is shown in Figure 1.38(a), where
we have first created a bar plot using the number variable and then separated each group
by the levels of spam. The column proportions of Table 1.36 have been translated into a
standardized segmented bar plot in Figure 1.38(b), which is a helpful visualization of the
fraction of spam emails in each level of number.

 Example 1.43 Examine both of the segmented bar plots. Which is more useful?

Figure 1.38(a) contains more information, but Figure 1.38(b) presents the information
more clearly. This second plot makes it clear that emails with no number have a
relatively high rate of spam email – about 27%! On the other hand, less than 10% of
email with small or big numbers are spam.

Since the proportion of spam changes across the groups in Figure 1.38(b), we can
conclude the variables are dependent, which is something we were also able to discern using
table proportions. Because both the none and big groups have relatively few observations
compared to the small group, the association is more difficult to see in Figure 1.38(a).

In some other cases, a segmented bar plot that is not standardized will be more useful
in communicating important information. Before settling on a particular segmented bar
plot, create standardized and non-standardized forms and decide which is more effective at
communicating features of the data.

A mosaic plot is a graphical display of contingency table information that is similar to
a bar plot for one variable or a segmented bar plot when using two variables. Figure 1.39(a)
shows a mosaic plot for the number variable. Each column represents a level of number,
and the column widths correspond to the proportion of emails of each number type. For
instance, there are fewer emails with no numbers than emails with only small numbers, so
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Figure 1.39: The one-variable mosaic plot for number and the two-variable
mosaic plot for both number and spam.
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Figure 1.40: Mosaic plot where emails are grouped by the number variable
after they’ve been divided into spam and not spam.

the no number email column is slimmer. In general, mosaic plots use box areas to represent
the number of observations.

This one-variable mosaic plot is further divided into pieces in Figure 1.39(b) using the
spam variable. Each column is split proportionally according to the fraction of emails that
were spam in each number category. For example, the second column, representing emails
with only small numbers, was divided into emails that were spam (lower) and not spam
(upper). As another example, the bottom of the third column represents spam emails that
had big numbers, and the upper part of the third column represents regular emails that
had big numbers. We can again use this plot to see that the spam and number variables are
associated since some columns are divided in different vertical locations than others, which
was the same technique used for checking an association in the standardized version of the
segmented bar plot.

In a similar way, a mosaic plot representing row proportions of Table 1.32 could
be constructed, as shown in Figure 1.40. However, because it is more insightful for this
application to consider the fraction of spam in each category of the number variable, we
prefer Figure 1.39(b).



40 CHAPTER 1. INTRODUCTION TO DATA

none

small

big

none small big

number

0

500

1000

1500

2000

2500

Figure 1.41: A pie chart and bar plot of number for the email data set.

1.7.4 The only pie chart you will see in this book

While pie charts are well known, they are not typically as useful as other charts in a data
analysis. A pie chart is shown in Figure 1.41 alongside a bar plot. It is generally more
difficult to compare group sizes in a pie chart than in a bar plot, especially when categories
have nearly identical counts or proportions. In the case of the none and big categories,
the difference is so slight you may be unable to distinguish any difference in group sizes for
either plot!

1.7.5 Comparing numerical data across groups

Some of the more interesting investigations can be considered by examining numerical data
across groups. The methods required here aren’t really new. All that is required is to make
a numerical plot for each group. Here two convenient methods are introduced: side-by-side
box plots and hollow histograms.

We will take a look again at the county data set and compare the median household
income for counties that gained population from 2000 to 2010 versus counties that had
no gain. While we might like to make a causal connection here, remember that these are
observational data and so such an interpretation would be unjustified.

There were 2,041 counties where the population increased from 2000 to 2010, and
there were 1,099 counties with no gain (all but one were a loss). A random sample of 100
counties from the first group and 50 from the second group are shown in Table 1.42 to give
a better sense of some of the raw data.

The side-by-side box plot is a traditional tool for comparing across groups. An
example is shown in the left panel of Figure 1.43, where there are two box plots, one for
each group, placed into one plotting window and drawn on the same scale.

Another useful plotting method uses hollow histograms to compare numerical data
across groups. These are just the outlines of histograms of each group put on the same
plot, as shown in the right panel of Figure 1.43.
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population gain no gain
41.2 33.1 30.4 37.3 79.1 34.5 40.3 33.5 34.8
22.9 39.9 31.4 45.1 50.6 59.4 29.5 31.8 41.3
47.9 36.4 42.2 43.2 31.8 36.9 28 39.1 42.8
50.1 27.3 37.5 53.5 26.1 57.2 38.1 39.5 22.3
57.4 42.6 40.6 48.8 28.1 29.4 43.3 37.5 47.1
43.8 26 33.8 35.7 38.5 42.3 43.7 36.7 36
41.3 40.5 68.3 31 46.7 30.5 35.8 38.7 39.8
68.3 48.3 38.7 62 37.6 32.2 46 42.3 48.2
42.6 53.6 50.7 35.1 30.6 56.8 38.6 31.9 31.1
66.4 41.4 34.3 38.9 37.3 41.7 37.6 29.3 30.1
51.9 83.3 46.3 48.4 40.8 42.6 57.5 32.6 31.1
44.5 34 48.7 45.2 34.7 32.2 46.2 26.5 40.1
39.4 38.6 40 57.3 45.2 33.1 38.4 46.7 25.9
43.8 71.7 45.1 32.2 63.3 54.7 36.4 41.5 45.7
71.3 36.3 36.4 41 37 66.7 39.7 37 37.7
50.2 45.8 45.7 60.2 53.1 21.4 29.3 50.1
35.8 40.4 51.5 66.4 36.1 43.6 39.8

Table 1.42: In this table, median household income (in $1000s) from a
random sample of 100 counties that gained population over 2000-2010 are
shown on the left. Median incomes from a random sample of 50 counties
that had no population gain are shown on the right.
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Figure 1.43: Side-by-side box plot (left panel) and hollow histograms (right
panel) for med income, where the counties are split by whether there was a
population gain or loss from 2000 to 2010. The income data were collected
between 2006 and 2010.
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⊙
Guided Practice 1.44 Use the plots in Figure 1.43 to compare the incomes for
counties across the two groups. What do you notice about the approximate center of
each group? What do you notice about the variability between groups? Is the shape
relatively consistent between groups? How many prominent modes are there for each
group?45

⊙
Guided Practice 1.45 What components of each plot in Figure 1.43 do you find
most useful?46

45Answers may vary a little. The counties with population gains tend to have higher income (median of
about $45,000) versus counties without a gain (median of about $40,000). The variability is also slightly
larger for the population gain group. This is evident in the IQR, which is about 50% bigger in the gain
group. Both distributions show slight to moderate right skew and are unimodal. There is a secondary
small bump at about $60,000 for the no gain group, visible in the hollow histogram plot, that seems out
of place. (Looking into the data set, we would find that 8 of these 15 counties are in Alaska and Texas.)
The box plots indicate there are many observations far above the median in each group, though we should
anticipate that many observations will fall beyond the whiskers when using such a large data set.

46Answers will vary. The side-by-side box plots are especially useful for comparing centers and spreads,
while the hollow histograms are more useful for seeing distribution shape, skew, and groups of anomalies.
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1.8 Exercises

1.8.1 Case study

1.1 Migraine and acupuncture. A migraine is a particularly painful type of headache, which
patients sometimes wish to treat with acupuncture. To determine whether acupuncture relieves
migraine pain, researchers conducted a randomized controlled study where 89 females diagnosed
with migraine headaches were randomly assigned to one of two groups: treatment or control.
43 patients in the treatment group received acupuncture that is specifically designed to treat
migraines. 46 patients in the control group received placebo acupuncture (needle insertion at
nonacupoint locations). 24 hours after patients received acupuncture, they were asked if they were
pain free. Results are summarized in the contingency table below.47

Pain free
Yes No Total

Treatment 10 33 43
Group

Control 2 44 46
Total 12 77 89

identified on the antero-internal part of the antitragus, the

anterior part of the lobe and the upper auricular concha, on
the same side of pain. The majority of these points were

effective very rapidly (within 1 min), while the remaining

points produced a slower antalgic response, between 2 and
5 min. The insertion of a semi-permanent needle in these

zones allowed stable control of the migraine pain, which

occurred within 30 min and still persisted 24 h later.
Since the most active site in controlling migraine pain

was the antero-internal part of the antitragus, the aim of
this study was to verify the therapeutic value of this elec-

tive area (appropriate point) and to compare it with an area

of the ear (representing the sciatic nerve) which is probably
inappropriate in terms of giving a therapeutic effect on

migraine attacks, since it has no somatotopic correlation

with head pain.

Materials and methods

The study enrolled 94 females, diagnosed as migraine

without aura following the International Classification of
Headache Disorders [5], who were subsequently examined

at the Women’s Headache Centre, Department of Gynae-

cology and Obstetrics of Turin University. They were all
included in the study during a migraine attack provided that

it started no more than 4 h previously. According to a

predetermined computer-made randomization list, the eli-
gible patients were randomly and blindly assigned to the

following two groups: group A (n = 46) (average age

35.93 years, range 15–60), group B (n = 48) (average age
33.2 years, range 16–58).

Before enrollment, each patient was asked to give an

informed consent to participation in the study.
Migraine intensity was measured by means of a VAS

before applying NCT (T0).

In group A, a specific algometer exerting a maximum
pressure of 250 g (SEDATELEC, France) was chosen to

identify the tender points with Pain–Pressure Test (PPT).

Every tender point located within the identified area by the
pilot study (Fig. 1, area M) was tested with NCT for 10 s

starting from the auricle, that was ipsilateral, to the side of

prevalent cephalic pain. If the test was positive and the
reduction was at least 25% in respect to basis, a semi-

permanent needle (ASP SEDATELEC, France) was

inserted after 1 min. On the contrary, if pain did not lessen
after 1 min, a further tender point was challenged in the

same area and so on. When patients became aware of an

initial decrease in the pain in all the zones of the head
affected, they were invited to use a specific diary card to

score the intensity of the pain with a VAS at the following

intervals: after 10 min (T1), after 30 min (T2), after
60 min (T3), after 120 min (T4), and after 24 h (T5).

In group B, the lower branch of the anthelix was

repeatedly tested with the algometer for about 30 s to
ensure it was not sensitive. On both the French and Chinese

auricular maps, this area corresponds to the representation

of the sciatic nerve (Fig. 1, area S) and is specifically used
to treat sciatic pain. Four needles were inserted in this area,

two for each ear.

In all patients, the ear acupuncture was always per-
formed by an experienced acupuncturist. The analysis of

the diaries collecting VAS data was conducted by an

impartial operator who did not know the group each patient
was in.

The average values of VAS in group A and B were

calculated at the different times of the study, and a statis-
tical evaluation of the differences between the values

obtained in T0, T1, T2, T3 and T4 in the two groups
studied was performed using an analysis of variance

(ANOVA) for repeated measures followed by multiple

t test of Bonferroni to identify the source of variance.
Moreover, to evaluate the difference between group B

and group A, a t test for unpaired data was always per-

formed for each level of the variable ‘‘time’’. In the case of
proportions, a Chi square test was applied. All analyses

were performed using the Statistical Package for the Social

Sciences (SPSS) software program. All values given in the
following text are reported as arithmetic mean (±SEM).

Results

Only 89 patients out of the entire group of 94 (43 in group
A, 46 in group B) completed the experiment. Four patients

withdrew from the study, because they experienced an

unbearable exacerbation of pain in the period preceding the
last control at 24 h (two from group A and two from group

B) and were excluded from the statistical analysis since

they requested the removal of the needles. One patient
from group A did not give her consent to the implant of the

semi-permanent needles. In group A, the mean number of

Fig. 1 The appropriate area
(M) versus the inappropriate
area (S) used in the treatment
of migraine attacks
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Figure from the original

paper displaying the ap-

propriate area (M) versus

the inappropriate area (S)

used in the treatment of

migraine attacks.

(a) What percent of patients in the treatment group were pain free 24 hours after receiving
acupuncture? What percent in the control group?

(b) At first glance, does acupuncture appear to be an effective treatment for migraines? Explain
your reasoning.

(c) Do the data provide convincing evidence that there is a real pain reduction for those patients
in the treatment group? Or do you think that the observed difference might just be due to
chance?

1.2 Sinusitis and antibiotics, Part I. Researchers studying the effect of antibiotic treatment
for acute sinusitis compared to symptomatic treatments randomly assigned 166 adults diagnosed
with acute sinusitis to one of two groups: treatment or control. Study participants received either
a 10-day course of amoxicillin (an antibiotic) or a placebo similar in appearance and taste. The
placebo consisted of symptomatic treatments such as acetaminophen, nasal decongestants, etc. At
the end of the 10-day period patients were asked if they experienced significant improvement in
symptoms. The distribution of responses are summarized below.48

Self-reported significant
improvement in symptoms
Yes No Total

Treatment 66 19 85
Group

Control 65 16 81
Total 131 35 166

(a) What percent of patients in the treatment group experienced a significant improvement in
symptoms? What percent in the control group?

(b) Based on your findings in part (a), which treatment appears to be more effective for sinusitis?

(c) Do the data provide convincing evidence that there is a difference in the improvement rates
of sinusitis symptoms? Or do you think that the observed difference might just be due to
chance?

47G. Allais et al. “Ear acupuncture in the treatment of migraine attacks: a randomized trial on the
efficacy of appropriate versus inappropriate acupoints”. In: Neurological Sci. 32.1 (2011), pp. 173–175.

48J.M. Garbutt et al. “Amoxicillin for Acute Rhinosinusitis: A Randomized Controlled Trial”. In:
JAMA: The Journal of the American Medical Association 307.7 (2012), pp. 685–692.

http://www.ncbi.nlm.nih.gov/pubmed/21533739
http://www.ncbi.nlm.nih.gov/pubmed/21533739
http://jama.jamanetwork.com/article.aspx?articleid=1104985


44 CHAPTER 1. INTRODUCTION TO DATA

1.8.2 Data basics

1.3 Identify study components, Part I. Identify (i) the cases, (ii) the variables and their
types, and (iii) the main research question in the studies described below.

(a) Researchers collected data to examine the relationship between pollutants and preterm births
in Southern California. During the study air pollution levels were measured by air quality
monitoring stations. Specifically, levels of carbon monoxide were recorded in parts per million,
nitrogen dioxide and ozone in parts per hundred million, and coarse particulate matter (PM10)
in µg/m3. Length of gestation data were collected on 143,196 births between the years 1989
and 1993, and air pollution exposure during gestation was calculated for each birth. The
analysis suggested that increased ambient PM10 and, to a lesser degree, CO concentrations
may be associated with the occurrence of preterm births.49

(b) The Buteyko method is a shallow breathing technique developed by Konstantin Buteyko, a
Russian doctor, in 1952. Anecdotal evidence suggests that the Buteyko method can reduce
asthma symptoms and improve quality of life. In a scientific study to determine the effec-
tiveness of this method, researchers recruited 600 asthma patients aged 18-69 who relied on
medication for asthma treatment. These patients were split into two research groups: one
practiced the Buteyko method and the other did not. Patients were scored on quality of life,
activity, asthma symptoms, and medication reduction on a scale from 0 to 10. On average,
the participants in the Buteyko group experienced a significant reduction in asthma symptoms
and an improvement in quality of life.50

1.4 Identify study components, Part II. Identify (i) the cases, (ii) the variables and their
types, and (iii) the main research question of the studies described below.

(a) While obesity is measured based on body fat percentage (more than 35% body fat for women
and more than 25% for men), precisely measuring body fat percentage is difficult. Body
mass index (BMI), calculated as the ratio weight/height2, is often used as an alternative
indicator for obesity. A common criticism of BMI is that it assumes the same relative body
fat percentage regardless of age, sex, or ethnicity. In order to determine how useful BMI is for
predicting body fat percentage across age, sex and ethnic groups, researchers studied 202 black
and 504 white adults who resided in or near New York City, were ages 20-94 years old, had
BMIs of 18-35 kg/m2, and who volunteered to be a part of the study. Participants reported
their age, sex, and ethnicity and were measured for weight and height. Body fat percentage
was measured by submerging the participants in water.51

(b) In a study of the relationship between socio-economic class and unethical behavior, 129 Uni-
versity of California undergraduates at Berkeley were asked to identify themselves as having
low or high social-class by comparing themselves to others with the most (least) money, most
(least) education, and most (least) respected jobs. They were also presented with a jar of
individually wrapped candies and informed that they were for children in a nearby laboratory,
but that they could take some if they wanted. Participants completed unrelated tasks and
then reported the number of candies they had taken. It was found that those in the upper-class
rank condition took more candy than did those in the lower-rank condition.52

49B. Ritz et al. “Effect of air pollution on preterm birth among children born in Southern California
between 1989 and 1993”. In: Epidemiology 11.5 (2000), pp. 502–511.

50J. McGowan. “Health Education: Does the Buteyko Institute Method make a difference?” In: Thorax
58 (2003).

51Gallagher et al. “How useful is body mass index for comparison of body fatness across age, sex, and
ethnic groups?” In: American Journal of Epidemiology 143.3 (1996), pp. 228–239.

52P.K. Piff et al. “Higher social class predicts increased unethical behavior”. In: Proceedings of the
National Academy of Sciences (2012).

http://journals.lww.com/epidem/Abstract/2000/09000/Effect_of_Air_Pollution_on_Preterm_Birth_Among.4.aspx
http://journals.lww.com/epidem/Abstract/2000/09000/Effect_of_Air_Pollution_on_Preterm_Birth_Among.4.aspx
http://aje.oxfordjournals.org/content/143/3/228.full.pdf
http://aje.oxfordjournals.org/content/143/3/228.full.pdf
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxwYXVscGlmZnxneDoxNzNmMTIwNDk5MTJiMzlj
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1.5 Fisher’s irises. Sir Ronald Aylmer Fisher was an English statistician, evolutionary biologist,
and geneticist who worked on a data set that contained sepal length and width, and petal length
and width from three species of iris flowers (setosa, versicolor and virginica). There were 50 flowers
from each species in the data set.53

(a) How many cases were included in the data?

(b) How many numerical variables are included in the
data? Indicate what they are, and if they are con-
tinuous or discrete.

(c) How many categorical variables are included in the
data, and what are they? List the corresponding
levels (categories).

1.6 Smoking habits of UK residents. A survey was conducted to study the smoking habits
of UK residents. Below is a data matrix displaying a portion of the data collected in this survey.
Note that “£” stands for British Pounds Sterling, “cig” stands for cigarettes, and “N/A” refers to
a missing component of the data.54

gender age marital grossIncome smoke amtWeekends amtWeekdays
1 Female 42 Single Under £2,600 Yes 12 cig/day 12 cig/day
2 Male 44 Single £10,400 to £15,600 No N/A N/A
3 Male 53 Married Above £36,400 Yes 6 cig/day 6 cig/day

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1691 Male 40 Single £2,600 to £5,200 Yes 8 cig/day 8 cig/day

(a) What does each row of the data matrix represent?

(b) How many participants were included in the survey?

(c) Indicate whether each variable in the study is numerical or categorical. If numerical, identify
as continuous or discrete. If categorical, indicate if the variable is ordinal.

1.8.3 Overview of data collection principles

1.7 Generalizability and causality, Part I. Identify the population of interest and the sample
in the studies described in Exercise 1.3. Also comment on whether or not the results of the study
can be generalized to the population and if the findings of the study can be used to establish causal
relationships.

1.8 Generalizability and causality, Part II. Identify the population of interest and the
sample in the studies described in Exercise 1.4. Also comment on whether or not the results of
the study can be generalized to the population and if the findings of the study can be used to
establish causal relationships.

53Photo by rtclauss on Flickr, Iris.; R.A Fisher. “The Use of Multiple Measurements in Taxonomic
Problems”. In: Annals of Eugenics 7 (1936), pp. 179–188.

54Stats4Schools, Smoking.

http://www.flickr.com/photos/rtclauss/3834965043
http://onlinelibrary.wiley.com/store/10.1111/j.1469-1809.1936.tb02137.x/asset/j.1469-1809.1936.tb02137.x.pdf?v=1&t=h407g9i2&s=7d41a7d29aeebe716c4581a5206dc85edbe6b935
http://onlinelibrary.wiley.com/store/10.1111/j.1469-1809.1936.tb02137.x/asset/j.1469-1809.1936.tb02137.x.pdf?v=1&t=h407g9i2&s=7d41a7d29aeebe716c4581a5206dc85edbe6b935
http://www.rsscse.org.uk/stats4schools/large_datasets/smoking/default.html
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1.9 GPA and study time. A survey was conducted on 218 undergraduates from Duke Uni-
versity who took an introductory statistics course in Spring 2012. Among many other questions,
this survey asked them about their GPA and the number of hours they spent studying per week.
The scatterplot below displays the relationship between these two variables.

(a) What is the explanatory variable and
what is the response variable?

(b) Describe the relationship between the
two variables. Make sure to discuss un-
usual observations, if any.

(c) Is this an experiment or an observa-
tional study?

(d) Can we conclude that studying longer
hours leads to higher GPAs?

Study hours/week

G
PA
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3.5

4.0

1.10 Income and education. The scatterplot below shows the relationship between per capita
income (in thousands of dollars) and percent of population with a bachelor’s degree in 3,143
counties in the US in 2010.

(a) What are the explanatory and response
variables?

(b) Describe the relationship between the
two variables. Make sure to discuss un-
usual observations, if any.

(c) Can we conclude that having a bache-
lor’s degree increases one’s income?
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1.8.4 Observational studies and sampling strategies

1.11 Propose a sampling strategy. A large college class has 160 students. All 160 students
attend the lectures together, but the students are divided into 4 groups, each of 40 students, for
lab sections administered by different teaching assistants. The professor wants to conduct a survey
about how satisfied the students are with the course, and he believes that the lab section a student
is in might affect the student’s overall satisfaction with the course.

(a) What type of study is this?

(b) Suggest a sampling strategy for carrying out this study.
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1.12 Internet use and life expectancy. The scatterplot below shows the relationship between
estimated life expectancy at birth as of 201255 and percentage of internet users in 201056 in 208
countries.

(a) Describe the relationship between life
expectancy and percentage of internet
users.

(b) What type of study is this?

(c) State a possible confounding variable
that might explain this relationship
and describe its potential effect.
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1.13 Random digit dialing. The Gallup Poll uses a procedure called random digit dialing,
which creates phone numbers based on a list of all area codes in America in conjunction with the
associated number of residential households in each area code. Give a possible reason the Gallup
Poll chooses to use random digit dialing instead of picking phone numbers from the phone book.

1.14 Sampling strategies. A statistics student who is curious about the relationship between
the amount of time students spend on social networking sites and their performance at school
decides to conduct a survey. Three research strategies for collecting data are described below. In
each, name the sampling method proposed and any bias you might expect.

(a) He randomly samples 40 students from the study’s population, gives them the survey, asks
them to fill it out and bring it back the next day.

(b) He gives out the survey only to his friends, and makes sure each one of them fills out the
survey.

(c) He posts a link to an online survey on his Facebook wall and asks his friends to fill out the
survey.

1.15 Family size. Suppose we want to estimate family size, where family is defined as one
or more parents living with children. If we select students at random at an elementary school
and ask them what their family size is, will our average be biased? If so, will it overestimate or
underestimate the true value?

55CIA Factbook, Country Comparison: Life Expectancy at Birth, 2012.
56ITU World Telecommunication/ICT Indicators database, World Telecommunication/ICT Indicators

Database, 2012.

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2102rank.html
http://www.itu.int/ITU-D/ict/statistics/index.html
http://www.itu.int/ITU-D/ict/statistics/index.html
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1.16 Flawed reasoning. Identify the flaw in reasoning in the following scenarios. Explain
what the individuals in the study should have done differently if they wanted to make such strong
conclusions.

(a) Students at an elementary school are given a questionnaire that they are required to return
after their parents have completed it. One of the questions asked is, “Do you find that your
work schedule makes it difficult for you to spend time with your kids after school?” Of the
parents who replied, 85% said “no”. Based on these results, the school officials conclude that
a great majority of the parents have no difficulty spending time with their kids after school.

(b) A survey is conducted on a simple random sample of 1,000 women who recently gave birth,
asking them about whether or not they smoked during pregnancy. A follow-up survey asking
if the children have respiratory problems is conducted 3 years later, however, only 567 of these
women are reached at the same address. The researcher reports that these 567 women are
representative of all mothers.

(c) A orthopedist administers a questionnaire to 30 of his patients who do not have any joint
problems and finds that 20 of them regularly go running. He concludes that running decreases
the risk of joint problems.

1.17 Reading the paper. Below are excerpts from two articles published in the NY Times:

(a) An article called Risks: Smokers Found More Prone to Dementia states the following:57

“Researchers analyzed the data of 23,123 health plan members who participated in a volun-

tary exam and health behavior survey from 1978 to 1985, when they were 50 to 60 years old.

Twenty-three years later, about one-quarter of the group, or 5,367, had dementia, including

1,136 with Alzheimers disease and 416 with vascular dementia. After adjusting for other

factors, the researchers concluded that pack-a-day smokers were 37 percent more likely than

nonsmokers to develop dementia, and the risks went up sharply with increased smoking; 44

percent for one to two packs a day; and twice the risk for more than two packs.”

Based on this study, can we conclude that smoking causes dementia later in life? Explain your
reasoning.

(b) Another article called The School Bully Is Sleepy states the following:58

“The University of Michigan study, collected survey data from parents on each child’s sleep

habits and asked both parents and teachers to assess behavioral concerns. About a third of

the students studied were identified by parents or teachers as having problems with disruptive

behavior or bullying. The researchers found that children who had behavioral issues and

those who were identified as bullies were twice as likely to have shown symptoms of sleep

disorders.”

A friend of yours who read the article says, “The study shows that sleep disorders lead to
bullying in school children.” Is this statement justified? If not, how best can you describe the
conclusion that can be drawn from this study?

1.18 Shyness on Facebook. Given the anonymity afforded to individuals in online interac-
tions, researchers hypothesized that shy individuals would have more favorable attitudes toward
Facebook and that shyness would be positively correlated with time spent on Facebook. They also
hypothesized that shy individuals would have fewer Facebook “Friends” just like they have fewer
friends than non-shy individuals have in the offline world. Data were collected on 103 undergrad-
uate students at a university in southwestern Ontario via online questionnaires. The study states
“Participants were recruited through the university’s psychology participation pool. After indicat-
ing an interest in the study, participants were sent an e-mail containing the study’s URL as well
as the necessary login credentials.” Are the results of this study generalizable to the population of
all Facebook users?59

57R.C. Rabin. “Risks: Smokers Found More Prone to Dementia”. In: New York Times (2010).
58T. Parker-Pope. “The School Bully Is Sleepy”. In: New York Times (2011).
59E.S. Orr et al. “The influence of shyness on the use of Facebook in an undergraduate sample”. In:

CyberPsychology & Behavior 12.3 (2009), pp. 337–340.

http://www.nytimes.com/2010/11/02/health/research/02risks.html
http://well.blogs.nytimes.com/2011/06/02/the-school-bully-is-sleepy
http://online.liebertpub.com/doi/abs/10.1089/cpb.2008.0214
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1.8.5 Experiments

1.19 Vitamin supplements. In order to assess the effectiveness of taking large doses of vitamin
C in reducing the duration of the common cold, researchers recruited 400 healthy volunteers from
staff and students at a university. A quarter of the patients were assigned a placebo, and the
rest were evenly divided between 1g Vitamin C, 3g Vitamin C, or 3g Vitamin C plus additives
to be taken at onset of a cold for the following two days. All tablets had identical appearance
and packaging. The nurses who handed the prescribed pills to the patients knew which patient
received which treatment, but the researchers assessing the patients when they were sick did not.
No significant differences were observed in any measure of cold duration or severity between the
four medication groups, and the placebo group had the shortest duration of symptoms.60

(a) Was this an experiment or an observational study? Why?

(b) What are the explanatory and response variables in this study?

(c) Were the patients blinded to their treatment?

(d) Was this study double-blind?

(e) Participants are ultimately able to choose whether or not to use the pills prescribed to them.
We might expect that not all of them will adhere and take their pills. Does this introduce a
confounding variable to the study? Explain your reasoning.

1.20 Soda preference. You would like to conduct an experiment in class to see if your class-
mates prefer the taste of regular Coke or Diet Coke. Briefly outline a design for this study.

1.21 Exercise and mental health. A researcher is interested in the effects of exercise on
mental health and he proposes the following study: Use stratified random sampling to ensure
representative proportions of 18-30, 31-40 and 41-55 year olds from the population. Next, randomly
assign half the subjects from each age group to exercise twice a week, and instruct the rest not
to exercise. Conduct a mental health exam at the beginning and at the end of the study, and
compare the results.

(a) What type of study is this?

(b) What are the treatment and control groups in this study?

(c) Does this study make use of blocking? If so, what is the blocking variable?

(d) Does this study make use of blinding?

(e) Comment on whether or not the results of the study can be used to establish a causal rela-
tionship between exercise and mental health, and indicate whether or not the conclusions can
be generalized to the population at large.

(f) Suppose you are given the task of determining if this proposed study should get funding.
Would you have any reservations about the study proposal?

60C. Audera et al. “Mega-dose vitamin C in treatment of the common cold: a randomised controlled
trial”. In: Medical Journal of Australia 175.7 (2001), pp. 359–362.

https://www.mja.com.au/journal/2001/175/7/mega-dose-vitamin-c-treatment-common-cold-randomised-controlled-trial
https://www.mja.com.au/journal/2001/175/7/mega-dose-vitamin-c-treatment-common-cold-randomised-controlled-trial
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1.22 Chia seeds and weight loss. Chia Pets – those terra-cotta figurines that sprout fuzzy
green hair – made the chia plant a household name. But chia has gained an entirely new reputation
as a diet supplement. In one 2009 study, a team of researchers recruited 38 men and divided them
evenly into two groups: treatment or control. They also recruited 38 women, and they randomly
placed half of these participants into the treatment group and the other half into the control group.
One group was given 25 grams of chia seeds twice a day, and the other was given a placebo. The
subjects volunteered to be a part of the study. After 12 weeks, the scientists found no significant
difference between the groups in appetite or weight loss.61

(a) What type of study is this?

(b) What are the experimental and control treatments in this study?

(c) Has blocking been used in this study? If so, what is the blocking variable?

(d) Has blinding been used in this study?

(e) Comment on whether or not we can make a causal statement, and indicate whether or not we
can generalize the conclusion to the population at large.

1.8.6 Examining numerical data

1.23 Mammal life spans. Data were collected on life spans (in years) and gestation lengths
(in days) for 62 mammals. A scatterplot of life span versus length of gestation is shown below.62

(a) What type of an association is apparent be-
tween life span and length of gestation?

(b) What type of an association would you ex-
pect to see if the axes of the plot were re-
versed, i.e. if we plotted length of gestation
versus life span?

(c) Are life span and length of gestation indepen-
dent? Explain your reasoning.
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1.24 Office productivity. Office productivity is relatively low when the employees feel no stress
about their work or job security. However, high levels of stress can also lead to reduced employee
productivity. Sketch a plot to represent the relationship between stress and productivity.

61D.C. Nieman et al. “Chia seed does not promote weight loss or alter disease risk factors in overweight
adults”. In: Nutrition Research 29.6 (2009), pp. 414–418.

62T. Allison and D.V. Cicchetti. “Sleep in mammals: ecological and constitutional correlates”. In:
Arch. Hydrobiol 75 (1975), p. 442.

http://www.sciencedirect.com/science/article/pii/S027153170900089X
http://www.sciencedirect.com/science/article/pii/S027153170900089X
http://www.faculty.biol.ttu.edu/strauss/Multivar/Lab/AllisonCicchetti1976.pdf
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1.25 Associations. Indicate which of the plots show a

(a) positive association

(b) negative association

(c) no association

Also determine if the positive and
negative associations are linear or
nonlinear. Each part may refer to
more than one plot.
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1.26 Parameters and statistics. Identify which value represents the sample mean and which
value represents the claimed population mean.

(a) A recent article in a college newspaper stated that college students get an average of 5.5 hrs of
sleep each night. A student who was skeptical about this value decided to conduct a survey by
randomly sampling 25 students. On average, the sampled students slept 6.25 hours per night.

(b) American households spent an average of about $52 in 2007 on Halloween merchandise such as
costumes, decorations and candy. To see if this number had changed, researchers conducted
a new survey in 2008 before industry numbers were reported. The survey included 1,500
households and found that average Halloween spending was $58 per household.

(c) The average GPA of students in 2001 at a private university was 3.37. A survey on a sample of
203 students from this university yielded an average GPA of 3.59 in Spring semester of 2012.

1.27 Make-up exam. In a class of 25 students, 24 of them took an exam in class and 1 student
took a make-up exam the following day. The professor graded the first batch of 24 exams and
found an average score of 74 points with a standard deviation of 8.9 points. The student who took
the make-up the following day scored 64 points on the exam.

(a) Does the new student’s score increase or decrease the average score?

(b) What is the new average?

(c) Does the new student’s score increase or decrease the standard deviation of the scores?

1.28 Days off at a mining plant. Workers at a particular mining site receive an average of 35
days paid vacation, which is lower than the national average. The manager of this plant is under
pressure from a local union to increase the amount of paid time off. However, he does not want
to give more days off to the workers because that would be costly. Instead he decides he should
fire 10 employees in such a way as to raise the average number of days off that are reported by his
employees. In order to achieve this goal, should he fire employees who have the most number of
days off, least number of days off, or those who have about the average number of days off?
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1.29 Smoking habits of UK residents, Part I. Exercise 1.6 introduces a data set on the
smoking habits of UK residents. Below are histograms displaying the distributions of the num-
ber of cigarettes smoked on weekdays and weekends, excluding non-smokers. Describe the two
distributions and compare them.

Amount Weekends
0 10 20 30 40 50 60

0

50

100

Amount Weekdays
0 10 20 30 40 50 60

0

50

1.30 Stats scores. Below are the final scores of 20 introductory statistics students.

79, 83, 57, 82, 94, 83, 72, 74, 73, 71,
66, 89, 78, 81, 78, 81, 88, 69, 77, 79

Draw a histogram of these data and describe the distribution.

1.31 Smoking habits of UK residents, Part II. A random sample of 5 smokers from the
data set discussed in Exercises 1.6 and 1.29 is provided below.

gender age maritalStatus grossIncome smoke amtWeekends amtWeekdays
Female 51 Married £2,600 to £5,200 Yes 20 cig/day 20 cig/day
Male 24 Single £10,400 to £15,600 Yes 20 cig/day 15 cig/day

Female 33 Married £10,400 to £15,600 Yes 20 cig/day 10 cig/day
Female 17 Single £5,200 to £10,400 Yes 20 cig/day 15 cig/day
Female 76 Widowed £5,200 to £10,400 Yes 20 cig/day 20 cig/day

(a) Find the mean amount of cigarettes smoked on weekdays and weekends by these 5 respondents.

(b) Find the standard deviation of the amount of cigarettes smoked on weekdays and on weekends
by these 5 respondents. Is the variability higher on weekends or on weekdays?

1.32 Factory defective rate. A factory quality control manager decides to investigate the
percentage of defective items produced each day. Within a given work week (Monday through
Friday) the percentage of defective items produced was 2%, 1.4%, 4%, 3%, 2.2%.

(a) Calculate the mean for these data.

(b) Calculate the standard deviation for these data, showing each step in detail.

1.33 Medians and IQRs. For each part, compare distributions (1) and (2) based on their
medians and IQRs. You do not need to calculate these statistics; simply state how the medians
and IQRs compare. Make sure to explain your reasoning.

(a) (1) 3, 5, 6, 7, 9
(2) 3, 5, 6, 7, 20

(b) (1) 3, 5, 6, 7, 9
(2) 3, 5, 8, 7, 9

(c) (1) 1, 2, 3, 4, 5
(2) 6, 7, 8, 9, 10

(d) (1) 0, 10, 50, 60, 100
(2) 0, 100, 500, 600, 1000
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1.34 Means and SDs. For each part, compare distributions (1) and (2) based on their means
and standard deviations. You do not need to calculate these statistics; simply state how the means
and the standard deviations compare. Make sure to explain your reasoning. Hint: It may be useful
to sketch dot plots of the distributions.

(a) (1) 3, 5, 5, 5, 8, 11, 11, 11, 13
(2) 3, 5, 5, 5, 8, 11, 11, 11, 20

(b) (1) -20, 0, 0, 0, 15, 25, 30, 30
(2) -40, 0, 0, 0, 15, 25, 30, 30

(c) (1) 0, 2, 4, 6, 8, 10
(2) 20, 22, 24, 26, 28, 30

(d) (1) 100, 200, 300, 400, 500
(2) 0, 50, 300, 550, 600

1.35 Box plot. Create a box plot for the data given in Exercise 1.30. The five number summary
provided below may be useful.

Min Q1 Q2 (Median) Q3 Max

57 72.5 78.5 82.5 94

1.36 Infant mortality. The infant mortality rate is defined as the number of infant deaths per
1,000 live births. This rate is often used as an indicator of the level of health in a country. The
relative frequency histogram below shows the distribution of estimated infant death rates in 2012
for 222 countries.63

(a) Estimate Q1, the median, and Q3
from the histogram.

(b) Would you expect the mean of this
data set to be smaller or larger than
the median? Explain your reasoning.

Infant Mortality Rate (per 1000 births)

0 20 40 60 80 100 120

0

0.125

0.25

0.375

1.37 Matching histograms and box plots. Describe the distribution in the histograms below
and match them to the box plots.

(a)
50 60 70

(b)
0 50 100

(c)
0 2 4 6
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63CIA Factbook, Country Comparison: Infant Mortality Rate, 2012.

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2091rank.html
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1.38 Air quality. Daily air quality is measured by the air quality index (AQI) reported by
the Environmental Protection Agency. This index reports the pollution level and what associated
health effects might be a concern. The index is calculated for five major air pollutants regulated
by the Clean Air Act. and takes values from 0 to 300, where a higher value indicates lower air
quality. AQI was reported for a sample of 91 days in 2011 in Durham, NC. The relative frequency
histogram below shows the distribution of the AQI values on these days.64

daily AQI value

10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

(a) Estimate the median AQI value of this sample.

(b) Would you expect the mean AQI value of this sample to be higher or lower than the median?
Explain your reasoning.

(c) Estimate Q1, Q3, and IQR for the distribution.

1.39 Histograms and box plots. Compare the two plots below. What characteristics of the
distribution are apparent in the histogram and not in the box plot? What characteristics are
apparent in the box plot but not in the histogram?
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64US Environmental Protection Agency, AirData, 2011.

http://www.epa.gov/airdata/ad_data_daily.html
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1.40 Marathon winners. The histogram and box plots below show the distribution of finishing
times for male and female winners of the New York Marathon between 1970 and 1999.

Marathon times (in hrs)
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(a) What features of the distribution are apparent in the histogram and not the box plot? What
features are apparent in the box plot but not in the histogram?

(b) What may be the reason for the bimodal distribution? Explain.

(c) Compare the distribution of marathon times for men and women based on the box plot shown
below.

2.0 2.4 2.8 3.2

females

males

(d) The time series plot shown below is another way to look at these data. Describe what is visible
in this plot but not in the others.
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1.41 Robust statistics. The first histogram below shows the distribution of the yearly incomes
of 40 patrons at a college coffee shop. Suppose two new people walk into the coffee shop: one
making $225,000 and the other $250,000. The second histogram shows the new income distribution.
Summary statistics are also provided.

(1)
60000 62500 65000 67500 70000

0

4

8

12

(2)
60000 110000 160000 210000 260000

0

4

8

12

(1) (2)

n 40 42
Min. 60,680 60,680

1st Qu. 63,620 63,710
Median 65,240 65,350

Mean 65,090 73,300
3rd Qu. 66,160 66,540

Max. 69,890 250,000
SD 2,122 37,321

(a) Would the mean or the median best represent what we might think of as a typical income
for the 42 patrons at this coffee shop? What does this say about the robustness of the two
measures?

(b) Would the standard deviation or the IQR best represent the amount of variability in the
incomes of the 42 patrons at this coffee shop? What does this say about the robustness of the
two measures?

1.42 Distributions and appropriate statistics. For each of the following, describe whether
you expect the distribution to be symmetric, right skewed, or left skewed. Also specify whether the
mean or median would best represent a typical observation in the data, and whether the variability
of observations would be best represented using the standard deviation or IQR.

(a) Housing prices in a country where 25% of the houses cost below $350,000, 50% of the houses
cost below $450,000, 75% of the houses cost below $1,000,000 and there are a meaningful
number of houses that cost more than $6,000,000.

(b) Housing prices in a country where 25% of the houses cost below $300,000, 50% of the houses
cost below $600,000, 75% of the houses cost below $900,000 and very few houses that cost
more than $1,200,000.

(c) Number of alcoholic drinks consumed by college students in a given week.

(d) Annual salaries of the employees at a Fortune 500 company.

1.43 Commuting times, Part I.
The histogram to the right shows the
distribution of mean commuting times
in 3,143 US counties in 2010. De-
scribe the distribution and comment on
whether or not a log transformation
may be advisable for these data.
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100

200
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1.44 Hispanic population, Part I. The histogram below shows the distribution of the per-
centage of the population that is Hispanic in 3,143 counties in the US in 2010. Also shown is a
histogram of logs of these values. Describe the distribution and comment on why we might want
to use log-transformed values in analyzing or modeling these data.
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1.45 Commuting times, Part II. Exercise 1.43 displays histograms of mean commuting times
in 3,143 US counties in 2010. Describe the spatial distribution of commuting times using the map
below.
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>33
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1.46 Hispanic population, Part II. Exercise 1.44 displays histograms of the distribution of
the percentage of the population that is Hispanic in 3,143 counties in the US in 2010.

0

20

>40

(a) What features of this distribution are apparent in the map but not in the histogram?

(b) What features are apparent in the histogram but not the map?

(c) Is one visualization more appropriate or helpful than the other? Explain your reasoning.

1.8.7 Considering categorical data

1.47 Antibiotic use in children. The bar plot and the pie chart below show the distribution of
pre-existing medical conditions of children involved in a study on the optimal duration of antibiotic
use in treatment of tracheitis, which is an upper respiratory infection.

(a) What features are apparent in the bar plot but not in the pie chart?

(b) What features are apparent in the pie chart but not in the bar plot?

(c) Which graph would you prefer to use for displaying these categorical data?
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1.48 Views on immigration. 910 randomly sampled registered voters from Tampa, FL were
asked if they thought workers who have illegally entered the US should be (i) allowed to keep their
jobs and apply for US citizenship, (ii) allowed to keep their jobs as temporary guest workers but
not allowed to apply for US citizenship, or (iii) lose their jobs and have to leave the country. The
results of the survey by political ideology are shown below.65

Political ideology
Conservative Moderate Liberal Total

(i) Apply for citizenship 57 120 101 278
(ii) Guest worker 121 113 28 262

Response
(iii) Leave the country 179 126 45 350
(iv) Not sure 15 4 1 20
Total 372 363 175 910

(a) What percent of these Tampa, FL voters identify themselves as conservatives?

(b) What percent of these Tampa, FL voters are in favor of the citizenship option?

(c) What percent of these Tampa, FL voters identify themselves as conservatives and are in favor
of the citizenship option?

(d) What percent of these Tampa, FL voters who identify themselves as conservatives are also in
favor of the citizenship option? What percent of moderates and liberal share this view?

(e) Do political ideology and views on immigration appear to be independent? Explain your
reasoning.

1.49 Views on the DREAM Act. The same
survey from Exercise 1.48 also asked respondents
if they support the DREAM Act, a proposed law
which would provide a path to citizenship for peo-
ple brought illegally to the US as children. Based
on the mosaic plot shown on the right, are views
on the DREAM Act and political ideology inde-
pendent?
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65SurveyUSA, News Poll #18927, data collected Jan 27-29, 2012.

http://www.surveyusa.com/client/PollReport.aspx?g=60d6fa81-2698-4c51-a5f8-714f40976df2
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1.50 Heart transplants, Part I. The Stanford University Heart Transplant Study was con-
ducted to determine whether an experimental heart transplant program increased lifespan. Each
patient entering the program was designated an official heart transplant candidate, meaning that
he was gravely ill and would most likely benefit from a new heart. Some patients got a transplant
and some did not. The variable transplant indicates which group the patients were in; patients
in the treatment group got a transplant and those in the control group did not. Another variable
called survived was used to indicate whether or not the patient was alive at the end of the study.66

(a) Based on the mosaic plot, is survival independent of whether or not the patient got a trans-
plant? Explain your reasoning.

(b) What do the box plots suggest about the efficacy (effectiveness) of transplants?
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66B. Turnbull et al. “Survivorship of Heart Transplant Data”. In: Journal of the American Statistical
Association 69 (1974), pp. 74–80.

http://www.jstor.org/discover/10.2307/2285502?uid=3739256&uid=2129&uid=2&uid=70&uid=4&sid=47699108222567


Chapter 2

Foundation for inference

 Example 2.1 Suppose your professor splits the students in class into two groups:
students on the left and students on the right. If p̂

L
and p̂

R
represent the proportion

of students who own an Apple product on the left and right, respectively, would you
be surprised if p̂

L
did not exactly equal p̂

R
?

While the proportions would probably be close to each other, they are probably not
exactly the same. We would probably observe a small difference due to chance.⊙
Guided Practice 2.2 If we don’t think the side of the room a person sits on in
class is related to whether the person owns an Apple product, what assumption are
we making about the relationship between these two variables?1

Studying randomness of this form is a key focus of statistics. In this chapter, we’ll
explore this type of randomness in the context of several applications, and we’ll learn new
tools and ideas that will be applied throughout the rest of the book.

2.1 Randomization case study: gender discrimination

We consider a study investigating gender discrimination in the 1970s, which is set in the
context of personnel decisions within a bank.2 The research question we hope to answer is,
“Are females discriminated against in promotion decisions made by male managers?”

2.1.1 Variability within data

The participants in this study were 48 male bank supervisors attending a management
institute at the University of North Carolina in 1972. They were asked to assume the role
of the personnel director of a bank and were given a personnel file to judge whether the
person should be promoted to a branch manager position. The files given to the participants
were identical, except that half of them indicated the candidate was male and the other half
indicated the candidate was female. These files were randomly assigned to the subjects.

1We would be assuming that these two variables are independent, meaning they are unrelated.
2Rosen B and Jerdee T. 1974. Influence of sex role stereotypes on personnel decisions. Journal of

Applied Psychology 59(1):9-14.

61
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⊙
Guided Practice 2.3 Is this an observational study or an experiment? How does
the type of study impact what can be inferred from the results?3

For each supervisor we recorded the gender associated with the assigned file and the
promotion decision. Using the results of the study summarized in Table 2.1, we would like
to evaluate if females are unfairly discriminated against in promotion decisions. In this
study, a smaller proportion of females are promoted than males (0.583 versus 0.875), but
it is unclear whether the difference provides convincing evidence that females are unfairly
discriminated against.

decision

promoted not promoted Total
male 21 3 24

gender
female 14 10 24
Total 35 13 48

Table 2.1: Summary results for the gender discrimination study.

 Example 2.4 Statisticians are sometimes called upon to evaluate the strength of
evidence. When looking at the rates of promotion for males and females in this
study, why might we be tempted to immediately conclude that females are being
discriminated against?

The large difference in promotion rates (58.3% for females versus 87.5% for males)
suggest there might be discrimination against women in promotion decisions. How-
ever, we cannot yet be sure if the observed difference represents discrimination or is
just from random chance. Generally there is a little bit of fluctuation in sample data,
and we wouldn’t expect the sample proportions to be exactly equal, even if the truth
was that the promotion decisions were independent of gender.

Example 2.4 is a reminder that the observed outcomes in the sample may not perfectly
reflect the true relationships between variables in the underlying population. Table 2.1
shows there were 7 fewer promotions in the female group than in the male group, a difference
in promotion rates of 29.2%

(
21
24 −

14
24 = 0.292

)
. This observed difference is what we call a

point estimate of the true effect. The point estimate of the difference is large, but the
sample size for the study is small, making it unclear if this observed difference represents
discrimination or whether it is simply due to chance. We label these two competing claims,
H0 and HA:

H0: Null hypothesis. The variables gender and decision are independent. They have
no relationship, and the observed difference between the proportion of males and
females who were promoted, 29.2%, was due to chance.

HA: Alternative hypothesis. The variables gender and decision are not indepen-
dent. The difference in promotion rates of 29.2% was not due to chance, and equally
qualified females are less likely to be promoted than males.

3The study is an experiment, as subjects were randomly assigned a male file or a female file. Since this
is an experiment, the results can be used to evaluate a causal relationship between gender of a candidate
and the promotion decision.
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Hypothesis testing
These hypotheses are part of what is called a hypothesis test. A hypothesis
test is a statistical technique used to evaluate competing claims using data. Often
times, the null hypothesis takes a stance of no difference or no effect. If the null
hypothesis and the data notably disagree, then we will reject the null hypothesis
in favor of the alternative hypothesis.

Don’t worry if you aren’t a master of hypothesis testing at the end of this section.
We’ll discuss these ideas and details many times in this chapter.

What would it mean if the null hypothesis, which says the variables gender and
decision are unrelated, is true? It would mean each banker would decide whether to
promote the candidate without regard to the gender indicated on the file. That is, the
difference in the promotion percentages would be due to the way the files were randomly
divided to the bankers, and the randomization just happened to give rise to a relatively
large difference of 29.2%.

Consider the alternative hypothesis: bankers were influenced by which gender was
listed on the personnel file. If this was true, and especially if this influence was substan-
tial, we would expect to see some difference in the promotion rates of male and female
candidates. If this gender bias was against females, we would expect a smaller fraction of
promotion recommendations for female personnel files relative to the male files.

We will choose between these two competing claims by assessing if the data conflict
so much with H0 that the null hypothesis cannot be deemed reasonable. If this is the case,
and the data support HA, then we will reject the notion of independence and conclude that
these data provide strong evidence of discrimination.

2.1.2 Simulating the study

Table 2.1 shows that 35 bank supervisors recommended promotion and 13 did not. Now,
suppose the bankers’ decisions were independent of gender. Then, if we conducted the
experiment again with a different random assignment of files, differences in promotion rates
would be based only on random fluctuation. We can actually perform this randomization,
which simulates what would have happened if the bankers’ decisions had been independent
of gender but we had distributed the files differently.4

In this simulation, we thoroughly shuffle 48 personnel files, 24 labeled male and 24
labeled female, and deal these files into two stacks. We will deal 35 files into the first
stack, which will represent the 35 supervisors who recommended promotion. The second
stack will have 13 files, and it will represent the 13 supervisors who recommended against
promotion. Then, as we did with the original data, we tabulate the results and determine
the fraction of male and female who were promoted.

Since the randomization of files in this simulation is independent of the promotion
decisions, any difference in the two fractions is entirely due to chance. Table 2.2 show the
results of such a simulation.⊙

Guided Practice 2.5 What is the difference in promotion rates between the two
simulated groups in Table 2.2? How does this compare to the observed difference
29.2% from the actual study?5

4The test procedure we employ in this section is formally called a permutation test.
518/24 − 17/24 = 0.042 or about 4.2% in favor of the men. This difference due to chance is much

smaller than the difference observed in the actual groups.
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decision

promoted not promoted Total
male 18 6 24

gender simulated
female 17 7 24
Total 35 13 48

Table 2.2: Simulation results, where any difference in promotion rates be-
tween male and female is purely due to chance.

2.1.3 Checking for independence

We computed one possible difference under the null hypothesis in Guided Practice 2.5,
which represents one difference due to chance. While in this first simulation, we physically
dealt out files, it is much more efficient to perform this simulation using a computer.
Repeating the simulation on a computer, we get another difference due to chance: -0.042.
And another: 0.208. And so on until we repeat the simulation enough times that we have
a good idea of what represents the distribution of differences from chance alone. Figure 2.3
shows a plot of the differences found from 100 simulations, where each dot represents a
simulated difference between the proportions of male and female files recommended for
promotion.
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Figure 2.3: A stacked dot plot of differences from 100 simulations produced
under the null hypothesis, H0, where gender simulated and decision are
independent. Two of the 100 simulations had a difference of at least 29.2%,
the difference observed in the study, and are shown as solid dots.

Note that the distribution of these simulated differences is centered around 0. Because
we simulated differences in a way that made no distinction between men and women, this
makes sense: we should expect differences from chance alone to fall around zero with some
random fluctuation for each simulation.

 Example 2.6 How often would you observe a difference of at least 29.2% (0.292)
according to Figure 2.3? Often, sometimes, rarely, or never?

It appears that a difference of at least 29.2% due to chance alone would only happen
about 2% of the time according to Figure 2.3. Such a low probability indicates that
observing such a large difference from chance is rare.
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The difference of 29.2% is a rare event if there really is no impact from listing gender
in the candidates’ files, which provides us with two possible interpretations of the study
results:

H0: Null hypothesis. Gender has no effect on promotion decision, and we observed a
difference that is so large that it would only happen rarely.

HA: Alternative hypothesis. Gender has an effect on promotion decision, and what we
observed was actually due to equally qualified women being discriminated against in
promotion decisions, which explains the large difference of 29.2%.

When we conduct formal studies, we reject a skeptical position if the data strongly conflict
with that position.6 In our analysis, we determined that there was only a≈2% probability of
obtaining a sample where ≥29.2% more males than females get promoted by chance alone,
so we conclude the data provide strong evidence of gender discrimination against women
by the supervisors. In this case, we reject the null hypothesis in favor of the alternative.

Statistical inference is the practice of making decisions and conclusions from data in
the context of uncertainty. Errors do occur, just like rare events, and the data set at hand
might lead us to the wrong conclusion. While a given data set may not always lead us to
a correct conclusion, statistical inference gives us tools to control and evaluate how often
these errors occur. Before getting into the nuances of hypothesis testing, let’s work through
another case study.

2.2 Randomization case study: opportunity cost

How rational and consistent is the behavior of the typical American college student? In this
section, we’ll explore whether college student consumers always consider an obvious fact:
money not spent now can be spent later.

In particular, we are interested in whether reminding students about this well-known
fact about money causes them to be a little thriftier. A skeptic might think that such a
reminder would have no impact. We can summarize these two perspectives using the null
and alternative hypothesis framework.

H0: Null hypothesis. Reminding students that they can save money for later purchases
will not have any impact on students’ spending decisions.

HA: Alternative hypothesis. Reminding students that they can save money for later
purchases will reduce the chance they will continue with a purchase.

In this section, we’ll explore an experiment conducted by researchers that investigates this
very question for students at a university in the southwestern United States.7

6This reasoning does not generally extend to anecdotal observations. Each of us observes incredibly
rare events every day, events we could not possibly hope to predict. However, in the non-rigorous setting of
anecdotal evidence, almost anything may appear to be a rare event, so the idea of looking for rare events in
day-to-day activities is treacherous. For example, we might look at the lottery: there was only a 1 in 176
million chance that the Mega Millions numbers for the largest jackpot in history (March 30, 2012) would
be (2, 4, 23, 38, 46) with a Mega ball of (23), but nonetheless those numbers came up! However, no matter
what numbers had turned up, they would have had the same incredibly rare odds. That is, any set of
numbers we could have observed would ultimately be incredibly rare. This type of situation is typical of our
daily lives: each possible event in itself seems incredibly rare, but if we consider every alternative, those
outcomes are also incredibly rare. We should be cautious not to misinterpret such anecdotal evidence.

7Frederick S, Novemsky N, Wang J, Dhar R, Nowlis S. 2009. Opportunity Cost Neglect. Journal of
Consumer Research 36: 553-561.
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2.2.1 Exploring the data set before the analysis

One-hundred and fifty students were recruited for the study, and each was given the fol-
lowing statement:

Imagine that you have been saving some extra money on the side to make some
purchases, and on your most recent visit to the video store you come across a
special sale on a new video. This video is one with your favorite actor or actress,
and your favorite type of movie (such as a comedy, drama, thriller, etc.). This
particular video that you are considering is one you have been thinking about
buying for a long time. It is available for a special sale price of $14.99.

What would you do in this situation? Please circle one of the options below.

Half of the 150 students were randomized into a control group and were given the following
two options:

(A) Buy this entertaining video.

(B) Not buy this entertaining video.

The remaining 75 students were placed in the treatment group, and they saw a slightly
modified option (B):

(A) Buy this entertaining video.

(B) Not buy this entertaining video. Keep the $14.99 for other purchases.

Would the extra statement reminding students of an obvious fact impact the purchasing
decision? Table 2.4 summarizes the study results.

decision
buy DVD not buy DVD Total

control group 56 19 75
treatment group 41 34 75
Total 97 53 150

Table 2.4: Summary of student choices in the opportunity cost study.

It might be a little easier to review the results using row proportions, specifically
considering the proportion of participants in each group who said they would buy or not
buy the DVD. These summaries are given in Table 2.5.

decision
buy DVD not buy DVD Total

control group 0.747 0.253 1.000
treatment group 0.547 0.453 1.000
Total 0.647 0.353 1.000

Table 2.5: The data from Table 2.4 summarized using row proportions.
Row proportions are particularly useful here since we can view the propor-
tion of buy and not buy decisions in each group.
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We will define a success in this study as a student who chooses not to buy the DVD.8

Then, the value of interest is the change in DVD purchase rates that results by reminding
students that not spending money now means they can spend the money later. We can
construct a point estimate for this difference as

p̂trmt − p̂ctrl =
34

75
− 19

75
= 0.453− 0.253 = 0.200

The proportion of students who chose not to buy the DVD was 20% higher in the treatment
group than the control group. However, is this result statistically significant? In other
words, is a 20% difference between the two groups so prominent that it is unlikely to have
occurred from chance alone?

2.2.2 Results from chance alone

The primary goal in this data analysis is to understand what sort of differences we might
see if the null hypothesis were true, i.e. the treatment had no effect on students. For this,
we’ll use the same procedure we applied in Section 2.1: randomization.

Let’s think about the data in the context of the hypotheses. If the null hypothesis (H0)
was true and the treatment had no impact on student decisions, then the observed difference
between the two groups of 20% could be attributed entirely to chance. If, on the other
hand, the alternative hypothesis (HA) is true, then the difference indicates that reminding
students about saving for later purchases actually impacts their buying decisions.

Just like with the gender discrimination study, we can perform a statistical analysis.
Using the same randomization technique from the last section, let’s see what happens when
we simulate the experiment under the scenario where there is no effect from the treatment.

While we would in reality do this simulation on a computer, it might be useful to
think about how we would go about carrying out the simulation without a computer.
We start with 150 index cards and label each card to indicate the distribution of our
response variable: decision. That is, 53 cards will be labeled “not buy DVD” to represent
the 53 students who opted not to buy, and 97 will be labeled “buy DVD” for the other
97 students. Then we shuffle these cards throughly and divide them into two stacks of
size 75, representing the simulated treatment and control groups. Any observed difference
between the proportions of “not buy DVD” cards (what we earlier defined as success) can
be attributed entirely to chance.

 Example 2.7 If we are randomly assigning the cards into the simulated treatment
and control groups, how many “not buy DVD” cards would we expect to end up
with in each simulated group? What would be the expected difference between the
proportions of “not buy DVD” cards in each group?

Answer: Since the simulated groups are of equal size, we would expect 53/2 = 26.5,
i.e. 26 or 27, “not buy DVD” cards in each simulated group, yielding a simulated point
estimate of 0%. However, due to random fluctuations, we might actually observe a
number a little above or below 26 and 27.

8Success is often defined in a study as the outcome of interest, and a “success” may or may not actually
be a positive outcome. For example, researchers working on a study on HIV prevalence might define a
“success” in the statistical sense as a patient who is HIV+. A more complete discussion of the term success
will be given in Chapter 3.
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The results of a randomization from chance alone is shown in Table 2.6. From this
table, we can compute a difference that occurred from chance alone:

p̂trmt,simulated − p̂ctrl,simulated =
24

75
− 29

75
= 0.32− 0.387 = −0.067

decision
buy DVD not buy DVD Total

simulated-control group 46 29 75
simulated-treatment group 51 24 75
Total 97 53 150

Table 2.6: Summary of student choices against their simulated groups.
The group assignment had no connection to the student decisions, so any
difference between the two groups is due to chance.

Just one simulation will not be enough to get a sense of what sorts of differences would
happen from chance alone. We’ll simulate another set of simulated groups and compute
the new difference: 0.013. And again: 0.067. And again: -0.173. We’ll do this 1,000
times. The results are summarized in a dot plot in Figure 2.7, where each point represents
a simulation. Since there are so many points, it is more convenient to summarize the
results in a histogram such as the one in Figure 2.8, where the height of each histogram
bar represents the fraction of observations in that group.

If there was no treatment effect, then we’d only observe a difference of at least +20%
about 0.6% of the time, or about 1-in-150 times. That is really rare! Instead, we will
conclude the data provide strong evidence there is a treatment effect: reminding students
before a purchase that they could instead spend the money later on something else lowers
the chance that they will continue with the purchase. Notice that we are able to make a
causal statement for this study since the study is an experiment.

2.3 Hypothesis testing

In the last two sections, we utilized a hypothesis test, which is a formal technique for
evaluating two competing possibilities. In each scenario, we described a null hypothesis,
which represented either a skeptical perspective or a perspective of no difference. We also
laid out an alternative hypothesis, which represented a new perspective such as the
possibility that there has been a change or that there is a treatment effect in an experiment.

Null and alternative hypotheses
The null hypothesis (H0) often represents either a skeptical perspective or a
claim to be tested. The alternative hypothesis (HA) represents an alternative
claim under consideration and is often represented by a range of possible values
for the value of interest.

The hypothesis testing framework is a very general tool, and we often use it without a
second thought. If a person makes a somewhat unbelievable claim, we are initially skeptical.
However, if there is sufficient evidence that supports the claim, we set aside our skepticism.
The hallmarks of hypothesis testing are also found in the US court system.
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Simulated difference in proportions of students who do not buy the DVD

−0.2 −0.1 0.0 0.1 0.2
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difference

Figure 2.7: A stacked dot plot of 1,000 chance differences produced under
the null hypothesis, H0. Six of the 1,000 simulations had a difference of at
least 20%, which was the difference observed in the study.
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Figure 2.8: A histogram of 1,000 chance differences produced under the
null hypothesis, H0. Histograms like this one are a more convenient repre-
sentation of data or results when there are a large number of observations.
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2.3.1 Hypothesis testing in the US court system

 Example 2.8 A US court considers two possible claims about a defendant: she is
either innocent or guilty. If we set these claims up in a hypothesis framework, which
would be the null hypothesis and which the alternative?

The jury considers whether the evidence is so convincing (strong) that there is no
reasonable doubt regarding the person’s guilt. That is, the skeptical perspective (null
hypothesis) is that the person is innocent until evidence is presented that convinces
the jury that the person is guilty (alternative hypothesis).

Jurors examine the evidence to see whether it convincingly shows a defendant is guilty.
Notice that if a jury finds a defendant not guilty, this does not necessarily mean the jury is
confident in the person’s innocence. They are simply not convinced of the alternative that
the person is guilty.

This is also the case with hypothesis testing: even if we fail to reject the null hypothesis,
we typically do not accept the null hypothesis as truth. Failing to find strong evidence for
the alternative hypothesis is not equivalent to providing evidence that the null hypothesis
is true.

2.3.2 p-value and statistical significance

In Section 2.1 we encountered a study from the 1970’s that explored whether there was
strong evidence that women were less likely to be promoted than men. The research ques-
tion – are females discriminated against in promotion decisions made by male managers?
– was framed in the context of hypotheses:

H0: Gender has no effect on promotion decisions.

HA: Women are discriminated against in promotion decisions.

The null hypothesis (H0) was a perspective of no difference. The data, summarized on
page 62, provided a point estimate of a 29.2% difference in recommended promotion rates
between men and women. We determined that such a difference from chance alone would
be rare: it would only happen about 2 in 100 times. When results like these are inconsistent
with H0, we reject H0 in favor of HA. Here, we concluded there was discrimination against
women.

The 2-in-100 chance is what we call a p-value, which is a probability quantifying the
strength of the evidence against the null hypothesis and in favor of the alternative.

p-value
The p-value is the probability of observing data at least as favorable to the alter-
native hypothesis as our current data set, if the null hypothesis were true. We typ-
ically use a summary statistic of the data, such as a difference in proportions, to
help compute the p-value and evaluate the hypotheses. This summary value that
is used to compute the p-value is often called the test statistic.
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 Example 2.9 In the gender discrimination study, the difference in discrimination
rates was our test statistic. What was the test statistic in the opportunity cost study
covered in Section 2.2?

The test statistic in the opportunity cost study was the difference in the proportion of
students who decided against the DVD purchase in the treatment and control groups.
In each of these examples, the point estimate of the difference in proportions was used
as the test statistic.

When the p-value is small, i.e. less than a previously set threshold, we say the results
are statistically significant. This means the data provide such strong evidence against
H0 that we reject the null hypothesis in favor of the alternative hypothesis. The thresh-
old, called the significance level and often represented by α (the Greek letter alpha), is

α
significance
level of a
hypothesis test

typically set to α = 0.05, but can vary depending on the field or the application. Using a
significance level of α = 0.05 in the discrimination study, we can say that the data provided
statistically significant evidence against the null hypothesis.

Statistical significance
We say that the data provide statistically significant evidence against the null
hypothesis if the p-value is less than some reference value, usually α = 0.05.

 Example 2.10 In the opportunity cost study in Section 2.2, we analyzed an experi-
ment where study participants were 20% less likely to continue with a DVD purchase
if they were reminded that the money, if not spent on the DVD, could be used for
other purchases in the future. We determined that such a large difference would
only occur about 1-in-150 times if the reminder actually had no influence on student
decision-making. What is the p-value in this study? Was the result statistically
significant?

The p-value was 0.006 (about 1/150). Since the p-value is less than 0.05, the data
provide statistically significant evidence that US college students were actually influ-
enced by the reminder.

What’s so special about 0.05?
We often use a threshold of 0.05 to determine whether a result is statistically
significant. But why 0.05? Maybe we should use a bigger number, or maybe a
smaller number. If you’re a little puzzled, that probably means you’re reading
with a critical eye – good job! We’ve made a video to help clarify why 0.05 :

www.openintro.org/why05

Sometimes it’s also a good idea to deviate from the standard. We’ll discuss when
to choose a threshold different than 0.05 in Section 2.3.4.

http://www.openintro.org/why05
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2.3.3 Decision errors

Hypothesis tests are not flawless. Just think of the court system: innocent people are
sometimes wrongly convicted and the guilty sometimes walk free. Similarly, data can point
to the wrong conclusion. However, what distinguishes statistical hypothesis tests from a
court system is that our framework allows us to quantify and control how often the data
lead us to the incorrect conclusion.

There are two competing hypotheses: the null and the alternative. In a hypothesis
test, we make a statement about which one might be true, but we might choose incorrectly.
There are four possible scenarios in a hypothesis test, which are summarized in Table 2.9.

Test conclusion

do not reject H0 reject H0 in favor of HA

H0 true okay Type 1 Error
Truth

HA true Type 2 Error okay

Table 2.9: Four different scenarios for hypothesis tests.

A Type 1 Error is rejecting the null hypothesis when H0 is actually true. Since we
rejected the null hypothesis in the gender discrimination and opportunity cost studies, it
is possible that we made a Type 1 Error in one or both of those studies. A Type 2 Error
is failing to reject the null hypothesis when the alternative is actually true.

 Example 2.11 In a US court, the defendant is either innocent (H0) or guilty (HA).
What does a Type 1 Error represent in this context? What does a Type 2 Error
represent? Table 2.9 may be useful.

If the court makes a Type 1 Error, this means the defendant is innocent (H0 true) but
wrongly convicted. A Type 2 Error means the court failed to reject H0 (i.e. failed to
convict the person) when she was in fact guilty (HA true).

⊙
Guided Practice 2.12 Consider the opportunity cost study where we concluded
students were less likely to make a DVD purchase if they were reminded that money
not spent now could be spent later. What would a Type 1 Error represent in this
context?9

 Example 2.13 How could we reduce the Type 1 Error rate in US courts? What
influence would this have on the Type 2 Error rate?

To lower the Type 1 Error rate, we might raise our standard for conviction from
“beyond a reasonable doubt” to “beyond a conceivable doubt” so fewer people would
be wrongly convicted. However, this would also make it more difficult to convict the
people who are actually guilty, so we would make more Type 2 Errors.

9Making a Type 1 Error in this context would mean that reminding students that money not spent
now can be spent later does not affect their buying habits, despite the strong evidence (the data suggesting
otherwise) found in the experiment. Notice that this does not necessarily mean something was wrong
with the data or that we made a computational mistake. Sometimes data simply point us to the wrong
conclusion, which is why scientific studies are often repeated to check initial findings.
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⊙
Guided Practice 2.14 How could we reduce the Type 2 Error rate in US courts?
What influence would this have on the Type 1 Error rate?10

The example and guided practice above provide an important lesson: if we reduce how
often we make one type of error, we generally make more of the other type.

2.3.4 Choosing a significance level

Choosing a significance level for a test is important in many contexts, and the traditional
level is 0.05. However, it is sometimes helpful to adjust the significance level based on the
application. We may select a level that is smaller or larger than 0.05 depending on the
consequences of any conclusions reached from the test.

If making a Type 1 Error is dangerous or especially costly, we should choose a small
significance level (e.g. 0.01 or 0.001). Under this scenario, we want to be very cautious
about rejecting the null hypothesis, so we demand very strong evidence favoring the alter-
native HA before we would reject H0.

If a Type 2 Error is relatively more dangerous or much more costly than a Type 1
Error, then we should choose a higher significance level (e.g. 0.10). Here we want to be
cautious about failing to reject H0 when the null is actually false.

Significance levels should reflect consequences of errors
The significance level selected for a test should reflect the real-world consequences
associated with making a Type 1 or Type 2 Error.

2.3.5 Introducing two-sided hypotheses

So far we have explored whether women were discriminated against and whether a simple
trick could make students a little thriftier. In these two case studies, we’ve actually ignored
some possibilities:

• What if men are actually discriminated against?

• What if the money trick actually makes students spend more?

These possibilities weren’t considered in our hypotheses or analyses. This may have seemed
natural since the data pointed in the directions in which we framed the problems. However,
there are two dangers if we ignore possibilities that disagree with our data or that conflict
with our worldview:

1. Framing an alternative hypothesis simply to match the direction that the data point
will generally inflate the Type 1 Error rate. After all the work we’ve done (and
will continue to do) to rigorously control the error rates in hypothesis tests, careless
construction of the alternative hypotheses can disrupt that hard work. We’ll explore
this topic further in Section 2.3.6.

2. If we only use alternative hypotheses that agree with our worldview, then we’re going
to be subjecting ourselves to confirmation bias, which means we are looking for
data that supports our ideas. That’s not very scientific, and we can do better!

10To lower the Type 2 Error rate, we want to convict more guilty people. We could lower the standards
for conviction from “beyond a reasonable doubt” to “beyond a little doubt”. Lowering the bar for guilt
will also result in more wrongful convictions, raising the Type 1 Error rate.
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The previous hypotheses we’ve seen are called one-sided hypothesis tests because they
only explored one direction of possibilities. Such hypotheses are appropriate when we are
exclusively interested in the single direction, but usually we want to consider all possibilities.
To do so, let’s learn about two-sided hypothesis tests in the context of a new study
that examines the impact of using blood thinners on patients who have undergone CPR.

Cardiopulmonary resuscitation (CPR) is a procedure used on individuals suffering a
heart attack when other emergency resources are unavailable. This procedure is helpful
in providing some blood circulation to keep a person alive, but CPR chest compressions
can also cause internal injuries. Internal bleeding and other injuries that can result from
CPR complicate additional treatment efforts. For instance, blood thinners may be used to
help release a clot that is causing the heart attack once a patient arrives in the hospital.
However, blood thinners negatively affect internal injuries.

Here we consider an experiment with patients who underwent CPR for a heart attack
and were subsequently admitted to a hospital.11 Each patient was randomly assigned to
either receive a blood thinner (treatment group) or not receive a blood thinner (control
group). The outcome variable of interest was whether the patient survived for at least
24 hours.

 Example 2.15 Form hypotheses for this study in plain and statistical language.
Let pc represent the true survival rate of people who do not receive a blood thinner
(corresponding to the control group) and pt represent the survival rate for people
receiving a blood thinner (corresponding to the treatment group).

We want to understand whether blood thinners are helpful or harmful. We’ll consider
both of these possibilities using a two-sided hypothesis test.

H0: Blood thinners do not have an overall survival effect, i.e. the survival proportions
are the same in each group. pt − pc = 0.

HA: Blood thinners have an impact on survival, either positive or negative, but not
zero. pt − pc 6= 0.

There were 50 patients in the experiment who did not receive a blood thinner and 40
patients who did. The study results are shown in Table 2.10.

Survived Died Total
Control 11 39 50
Treatment 14 26 40
Total 25 65 90

Table 2.10: Results for the CPR study. Patients in the treatment group
were given a blood thinner, and patients in the control group were not.

⊙
Guided Practice 2.16 What is the observed survival rate in the control group?
And in the treatment group? Also, provide a point estimate of the difference in
survival proportions of the two groups: p̂t − p̂c. 12

11Efficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation:
a prospective clinical trial, by Böttiger et al., The Lancet, 2001.

12Observed control survival rate: pc = 11
50

= 0.22. Treatment survival rate: pt = 14
40

= 0.35. Observed
difference: p̂t − p̂c = 0.35− 0.22 = 0.13.
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According to the point estimate, for patients who have undergone CPR outside of
the hospital, an additional 13% of these patients survive when they are treated with blood
thinners. However, we wonder if this difference could be easily explainable by chance.

As we did in our past two studies this chapter, we will simulate what type of differ-
ences we might see from chance alone under the null hypothesis. By randomly assigning
“simulated treatment” and “simulated control” stickers to the patients’ files, we get a new
grouping. If we repeat this simulation 10,000 times, we can build a null distribution of
the differences shown in Figure 2.11.

−0.4 −0.2 0.0 0.2 0.4

0

0.15
0.13

Figure 2.11: Null distribution of the point estimate, p̂t − p̂c. The shaded
right tail shows observations that are at least as large as the observed
difference, 0.13.

The right tail area is about 0.13. (Note: it is only a coincidence that we also have
p̂t − p̂c = 0.13.) However, contrary to how we calculated the p-value in previous studies,
the p-value of this test is not 0.13!

The p-value is defined as the chance we observe a result at least as favorable to
the alternative hypothesis as the result (i.e. the difference) we observe. In this case, any
differences less than or equal to -0.13 would also provide equally strong evidence favoring
the alternative hypothesis as a difference of 0.13. A difference of -0.13 would correspond
to 13% higher survival rate in the control group than the treatment group. In Figure 2.12
we’ve also shaded these differences in the left tail of the distribution. These two shaded
tails provide a visual representation of the p-value for a two-sided test.

For a two-sided test, take the single tail (in this case, 0.13) and double it to get the
p-value: 0.26. Since this p-value is larger than 0.05, we do not reject the null hypothesis.
That is, we do not find statistically significant evidence that the blood thinner has any
influence on survival of patients who undergo CPR prior to arriving at the hospital.

Default to a two-sided test
We want to be rigorous and keep an open mind when we analyze data and evidence.
Use a one-sided hypothesis test only if you truly have interest in only one direction.
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Figure 2.12: Null distribution of the point estimate, p̂t − p̂c. All values
that are at least as extreme as +0.13 but in either direction away from 0
are shaded.

Computing a p-value for a two-sided test
First compute the p-value for one tail of the distribution, then double that value
to get the two-sided p-value. That’s it!

2.3.6 Controlling the Type 1 Error rate

It is never okay to change two-sided tests to one-sided tests after observing the data. We
explore the consequences of ignoring this advice in the next example.

 Example 2.17 Using α = 0.05, we show that freely switching from two-sided tests
to one-sided tests will lead us to make twice as many Type 1 Errors as intended.

Suppose we are interested in finding any difference from 0. We’ve created a smooth-
looking null distribution representing differences due to chance in Figure 2.13.

0

5% 5%

Figure 2.13: The shaded regions represent areas where we would reject H0

under the bad practices considered in Example 2.17 when α = 0.05.

Suppose the sample difference was larger than 0. Then if we can flip to a one-sided
test, we would use HA: difference > 0. Now if we obtain any observation in the
upper 5% of the distribution, we would reject H0 since the p-value would just be
a the single tail. Thus, if the null hypothesis is true, we incorrectly reject the null
hypothesis about 5% of the time when the sample mean is above the null value, as
shown in Figure 2.13.
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Suppose the sample difference was smaller than 0. Then if we change to a one-sided
test, we would use HA: difference < 0. If the observed difference falls in the lower
5% of the figure, we would reject H0. That is, if the null hypothesis is true, then we
would observe this situation about 5% of the time.

By examining these two scenarios, we can determine that we will make a Type 1
Error 5% + 5% = 10% of the time if we are allowed to swap to the “best” one-sided
test for the data. This is twice the error rate we prescribed with our significance level:
α = 0.05 (!).

Caution: Hypothesis tests should be set up before seeing the data
After observing data, it is tempting to turn a two-sided test into a one-sided test.
Avoid this temptation. Hypotheses should be set up before observing the data.

2.3.7 How to use a hypothesis test

Frame the research question in terms of hypotheses. Hypothesis tests are appropri-
ate for research questions that can be summarized in two competing hypotheses. The null
hypothesis (H0) usually represents a skeptical perspective or a perspective of no difference.
The alternative hypothesis (HA) usually represents a new view or a difference.

Collect data with an observational study or experiment. If a research question
can be formed into two hypotheses, we can collect data to run a hypothesis test. If the
research question focuses on associations between variables but does not concern causation,
we would run an observational study. If the research question seeks a causal connection
between two or more variables, then an experiment should be used.

Analyze the data. Choose an analysis technique appropriate for the data and identify the
p-value. So far, we’ve only seen one analysis technique: randomization. Throughout the
rest of this textbook, we’ll encounter several new methods suitable for many other contexts.

Form a conclusion. Using the p-value from the analysis, determine whether the data
provide statistically significant evidence against the null hypothesis. Also, be sure to write
the conclusion in plain language so casual readers can understand the results.

2.4 Simulation case studies

Randomization is a statistical technique suitable for evaluating whether a difference in
sample proportions is due to chance. In this section, we explore the situation where we
focus on a single proportion, and we introduce a new simulation method.

2.4.1 Medical consultant

People providing an organ for donation sometimes seek the help of a special medical con-
sultant. These consultants assist the patient in all aspects of the surgery, with the goal
of reducing the possibility of complications during the medical procedure and recovery.
Patients might choose a consultant based in part on the historical complication rate of the
consultant’s clients.
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One consultant tried to attract patients by noting the average complication rate for
liver donor surgeries in the US is about 10%, but her clients have had only 3 complications
in the 62 liver donor surgeries she has facilitated. She claims this is strong evidence that
her work meaningfully contributes to reducing complications (and therefore she should
be hired!).

 Example 2.18 We will let p represent the true complication rate for liver donors
working with this consultant. Estimate p using the data, and label this value p̂.

The sample proportion for the complication rate is 3 complications divided by the
62 surgeries the consultant has worked on: p̂ = 3/62 = 0.048.

 Example 2.19 Is it possible to assess the consultant’s claim using the data?

No. The claim is that there is a causal connection, but the data are observational.
For example, maybe patients who can afford a medical consultant can afford better
medical care, which can also lead to a lower complication rate.

While it is not possible to assess the causal claim, it is still possible to test for an
association using these data. For this question we ask, could the low complication
rate of p̂ = 0.048 be due to chance?

 Example 2.20 We’re going to conduct a hypothesis test for this setting. Should
the test be one-sided or two-sided?

The setting has been framed in the context of the consultant being helpful, but what
if the consultant actually performed worse than the average? Would we care? More
than ever! Since we care about a finding in either direction, we should run a two-
sided test.⊙
Guided Practice 2.21 Write out hypotheses in both plain and statistical language
to test for the association between the consultant’s work and the true complication
rate, p, for this consultant’s clients.13

Parameter for a hypothesis test
A parameter for a hypothesis test is the “true” value of interest. We typically
estimate the parameter using a point estimate from a sample of data.

For example, we estimate the probability p of a complication for a client of the
medical consultant by examining the past complications rates of her clients:

p̂ = 3/62 = 0.048 is used to estimate p

Null value of a hypothesis test
The null value is the reference value for the parameter in H0, and it is sometimes
represented with the parameter’s label with a subscript 0, e.g. p0 (just like H0).

13H0: There is no association between the consultant’s contributions and the clients’ complication rate.
That is, the complication rate for the consultant’s clients is equal to the US average of 10%. In statistical
language, p = 0.10. HA: Patients who work with the consultant have a complication rate different than 10%,
i.e. p 6= 0.10.
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In the medical consultant case study, the parameter is p and the null value is p0 = 0.10.
We will use the p-value to quantify the possibility of a sample proportion (p̂) this far
from the null value. The p-value is computed based on the null distribution, which is the
distribution of the test statistic if the null hypothesis were true. Just like we did using
randomization for a difference in proportions, here we can simulate 62 new patients to see
what result might happen if the complication rate was 0.10.

Each client can be simulated using a deck of cards. Take one red card, nine black
cards, and mix them up. If the cards are well-shuffled, drawing the top card is one way of
simulating the chance a patient has a complication if the true rate is 0.10: if the card is
red, we say the patient had a complication, and if it is black then we say they did not have
a complication. If we repeat this process 62 times and compute the proportion of simulated
patients with complications, p̂sim, then this simulated proportion is exactly a draw from
the null distribution.⊙

Guided Practice 2.22 In a simulation of 62 patients, about how many would we
expect to have had a complication?14

We conducted such a simulation. There were 5 simulated cases with a complication
and 57 simulated cases without a complication: p̂sim = 5/62 = 0.081.

One simulation isn’t enough to get a sense of the null distribution, so we repeated
the simulation 10,000 times using a computer. Figure 2.14 shows the null distribution
from these 10,000 simulations. The simulated proportions that are less than or equal to
p̂ = 0.048 are shaded. There were 1222 simulated sample proportions with p̂sim ≤ 0.048,
which represents a fraction 0.1222 of our simulations:

left tail =
Number of observed simulations with p̂sim ≤ 0.048

10000
=

1222

10000
= 0.1222

However, this is not our p-value! Remember that we are conducting a two-sided test, so
we should double the one-tail area to get the p-value:15

p-value = 2× left tail = 2× 0.1222 = 0.2444

⊙
Guided Practice 2.23 Because the p-value is 0.2444, which is larger than the
significance level 0.05, we do not reject the null hypothesis. Explain what this means
in the context of the problem using plain language.16

 Example 2.24 Does the conclusion in Guided Practice 2.23 imply there is no real
association between the surgical consultant’s work and the risk of complications?
Explain.

No. It might be that the consultant’s work is associated with a lower or higher risk
of complications. However, the data did not provide enough information to reject the
null hypothesis.

14About 10% of the patients (6.2 on average) in the simulation will have a complication, though we will
see a little variation from one simulation to the next.

15This doubling approach is preferred even when the distribution isn’t symmetric, as in this case.
16The data do not provide strong evidence that the consultant’s work is associated with a lower or higher

rate of surgery complications than the general rate of 10%.
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Figure 2.14: The null distribution for p̂, created from 10,000 simulated
studies. The left tail contains 12.22% of the simulations. We double this
value to get the p-value.

2.4.2 Tappers and listeners

Here’s a game you can try with your friends or family: pick a simple, well-known song,
tap that tune on your desk, and see if the other person can guess the song. In this simple
game, you are the tapper, and the other person is the listener.

A Stanford University graduate student named Elizabeth Newton conducted an ex-
periment using the tapper-listener game.17 In her study, she recruited 120 tappers and 120
listeners into the study. About 50% of the tappers expected that the listener would be able
to guess the song. Newton wondered, is 50% a reasonable expectation?

Newton’s research question can be framed into two hypotheses:

H0: The tappers are correct, and generally 50% of the time listeners are able to guess the
tune. p = 0.50

HA: The tappers are incorrect, and either more than or less than 50% of listeners will be
able to guess the tune. p 6= 0.50

In Newton’s study, only 3 out of 120 listeners (p̂ = 0.025) were able to guess the tune!
From the perspective of the null hypothesis, we might wonder, how likely is it that we
would get this result from chance alone? That is, what’s the chance we would happen to
see such a small fraction if H0 were true and the true correct-guess rate is 0.50?

We will again use a simulation. To simulate 120 games under the null hypothesis where
p = 0.50, we could flip a coin 120 times. Each time the coin came up heads, this could
represent the listener guessing correctly, and tails would represent the listener guessing
incorrectly. For example, we can simulate 5 tapper-listener pairs by flipping a coin 5 times:

H H T H T
Correct Correct Wrong Correct Wrong

After flipping the coin 120 times, we got 56 heads for p̂sim = 0.467. As we did with the
randomization technique, seeing what would happen with one simulation isn’t enough. In
order to evaluate whether our originally observed proportion of 0.025 is unusual or not, we
should generate more simulations. Here we’ve repeated this simulation ten times:

0.558 0.517 0.467 0.458 0.525 0.425 0.458 0.492 0.550 0.483

17This case study is described in Made to Stick by Chip and Dan Heath. Little known fact: the teaching
principles behind many OpenIntro resources are based on Made to Stick.

http://www.openintro.org/redirect.php?go=made-to-stick&redirect=simulation_textbook_pdf_preliminary
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As before, we’ll run a total of 10,000 simulations using a computer. Figure 2.15 shows the
results of these simulations. Even in these 10,000 simulations, we don’t see any results close
to 0.025.
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Figure 2.15: Results from 10,000 simulations of the tapper-listener study
where guesses are correct half of the time.

⊙
Guided Practice 2.25 What is the p-value for the hypothesis test?18

⊙
Guided Practice 2.26 Do the data provide statistically significant evidence against
the null hypothesis? State an appropriate conclusion in the context of the research
question.19

2.5 Central Limit Theorem

We’ve encountered four case studies so far this chapter. While they differ in the settings,
in their outcomes, and also in the technique we’ve used to analyze the data, they all have
something in common: the general shape of the null distribution.

2.5.1 Null distribution from the case studies

Figure 2.16 shows the null distributions in each of the four case studies where we ran
10,000 simulations. In the case of the opportunity cost study, which originally had just
1,000 simulations, we’ve included an additional 9,000 simulations.⊙

Guided Practice 2.27 Describe the shape of the distributions and note anything
that you find interesting.20

18The p-value is the chance of seeing the data summary or something more in favor of the alternative
hypothesis. Since we didn’t observe anything even close to just 3 correct, the p-value will be small, around
1-in-10,000 or smaller.

19The p-value is less than 0.05, so we reject the null hypothesis. There is statistically significant evidence,
and the data provide strong evidence that the chance a listener will guess the correct tune is less than 50%.

20In general, the distributions are reasonably symmetric. The case study for the medical consultant is
the only distribution with any evident skew.
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Figure 2.16: The null distribution for each of the four case studies presented
in Sections 2.2-2.4.

As we observed in Chapter 1, it’s common for distributions to be skewed or contain
outliers. However, the null distributions we’ve so far encountered have all looked somewhat
similar and, for the most part, symmetric. They all resemble a bell-shaped curve. This is
not a coincidence, but rather, is guaranteed by mathematical theory.

Central Limit Theorem for proportions
If we look at a proportion (or difference in proportions) and the scenario satisfies
certain conditions, then the sample proportion (or difference in proportions) will
appear to follow a bell-shaped curve called the normal distribution.

An example of a perfect normal distribution is shown in Figure 2.17. Imagine laying
a normal curve over each of the four null distributions in Figure 2.16. While the mean and
standard deviation may change for each plot, the general shape remains roughly intact.

Figure 2.17: A normal curve.
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Mathematical theory guarantees that a sample proportion or a difference in sample
proportions will follow something that resembles a normal distribution when certain con-
ditions are met. These conditions fall into two categories:

Observations in the sample are independent. Independence is guaranteed when we
take a random sample from a population. It can also be guaranteed if we randomly
divide individuals into treatment and control groups.

The sample is large enough. The sample size cannot be too small. What qualifies as
“small” differs from one context to the next, and we’ll provide suitable guidelines for
proportions in Chapter 3.

So far we’ve had no need for the normal distribution. We’ve been able to answer our
questions somewhat easily using simulation techniques. However, soon this will change.
Simulating data can be non-trivial. For example, some scenarios that we will encounter in
Chapters 5 and 6 would require complex simulations. Instead, the normal distribution and
other distributions like it offer a general framework that applies to a very large number of
settings.

2.5.2 Examples of future settings we will consider

Below we introduce three new settings where the normal distribution will be useful but
constructing suitable simulations can be difficult.

 Example 2.28 The opportunity cost study determined that students are thriftier
if they are reminded that saving money now means they can spend the money later.
The study’s point estimate for the estimated impact was 20%, meaning 20% fewer
students would move forward with a DVD purchase in the study scenario. However,
as we’ve learned, point estimates aren’t perfect – they only provide an approximation
of the truth.

It would be useful if we could provide a range of plausible values for the impact,
more formally known as a confidence interval. It is often difficult to construct a
reliable confidence interval in many situations using simulations.21 However, doing
so is reasonably straightforward using the normal distribution. We’ll tackle this topic
in Section 2.8.

 Example 2.29 Book prices were collected for 73 courses at UCLA in Spring 2010.
Data were collected from both the UCLA Bookstore and Amazon. The differences in
these prices are shown in Figure 2.18. The mean difference in the price of the books
was $12.76, and we might wonder, does this provide strong evidence that the prices
differ between the two book sellers?

Here again we can apply the normal distribution, this time in the context of numerical
data. We’ll explore this example and construct such a hypothesis test in Section 4.2.

21The percentile bootstrap method has been put forward as an alternative. However, simulations show
that this method is consistently less robust than than the normal distribution. For more information, visit
openintro.org/bootstrap.

http://openintro.org/bootstrap
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Figure 2.18: Histogram of the difference in price for each book sampled.
These data are strongly skewed.

 Example 2.30 Elmhurst College in Illinois released anonymized data for family
income and financial support provided by the school for Elmhurst’s first-year students
in 2011. Figure 2.19 shows a regression line fit to a scatterplot of a sample of the
data. One question we will ask is, do the data show a real trend, or is the trend we
observe reasonably explained by chance?

In Chapter 5 we’ll learn how to apply least squares regression to quantify the trend
and quantify whether or not that trend can be explained by chance alone. For this case
study, we could again use the normal distribution to help us answer this question.
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Figure 2.19: Gift aid and family income for a random sample of 50 first-year
students from Elmhurst College, shown with a regression line.

These examples highlight the value of the normal distribution approach. However,
before we can apply the normal distribution to statistical inference, it is necessary to
become familiar with the mechanics of the normal distribution. In Section 2.6 we discuss
characteristics of the normal distribution, explore examples of data that follow a normal
distribution, and learn a new plotting technique that is useful for evaluating whether a
data set roughly follows the normal distribution. In Sections 2.7 and 2.8, we apply this
new knowledge in the context of hypothesis tests and confidence intervals.
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2.6 Normal distribution

Among all the distributions we see in statistics, one is overwhelmingly the most common.
The symmetric, unimodal, bell curve is ubiquitous throughout statistics. It is so common
that people often know it as the normal curve, normal model, or normal distribu-
tion.22 Under certain conditions, sample proportions, sample means, and differences can
be modeled using the normal distribution. Additionally, some variables such as SAT scores
and heights of US adult males closely follow the normal distribution.

Normal distribution facts
Many summary statistics and variables are nearly normal, but none are exactly
normal. Thus the normal distribution, while not perfect for any single problem,
is very useful for a variety of problems. We will use it in data exploration and to
solve important problems in statistics.

In this section, we will discuss the normal distribution in the context of data to (1)
become familiar with normal distribution techniques and (2) learn how to evaluate whether
data are nearly normal. In Sections 2.7-2.8 and beyond, we’ll move our discussion to focus
on applying the normal distribution and other related distributions to model point estimates
for hypothesis tests and for constructing confidence intervals.

2.6.1 Normal distribution model

The normal distribution always describes a symmetric, unimodal, bell-shaped curve. How-
ever, these curves can look different depending on the details of the model. Specifically, the
normal model can be adjusted using two parameters: mean and standard deviation. As
you can probably guess, changing the mean shifts the bell curve to the left or right, while
changing the standard deviation stretches or constricts the curve. Figure 2.20 shows the
normal distribution with mean 0 and standard deviation 1 in the left panel and the normal
distributions with mean 19 and standard deviation 4 in the right panel. Figure 2.21 shows
these distributions on the same axis.

−3 −2 −1 0 1 2 3

Y

7 11 15 19 23 27 31

Figure 2.20: Both curves represent the normal distribution, however, they
differ in their center and spread. The normal distribution with mean 0 and
standard deviation 1 is called the standard normal distribution.

22It is also introduced as the Gaussian distribution after Frederic Gauss, the first person to formalize
its mathematical expression.
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0 10 20 30

Figure 2.21: The normal models shown in Figure 2.20 but plotted together
and on the same scale.

If a normal distribution has mean µ and standard deviation σ, we may write the
distribution as N(µ, σ). The two distributions in Figure 2.21 can be written as

N(µ, σ)
Normal dist.
with mean µ
& st. dev. σ N(µ = 0, σ = 1) and N(µ = 19, σ = 4)

Because the mean and standard deviation describe a normal distribution exactly, they are
called the distribution’s parameters.⊙

Guided Practice 2.31 Write down the short-hand for a normal distribution with
(a) mean 5 and standard deviation 3, (b) mean -100 and standard deviation 10, and
(c) mean 2 and standard deviation 9. 23

2.6.2 Standardizing with Z scores

 Example 2.32 Table 2.22 shows the mean and standard deviation for total scores
on the SAT and ACT. The distribution of SAT and ACT scores are both nearly
normal. Suppose Ann scored 1800 on her SAT and Tom scored 24 on his ACT. Who
performed better?

We use the standard deviation as a guide. Ann is 1 standard deviation above average
on the SAT: 1500 + 300 = 1800. Tom is 0.6 standard deviations above the mean on
the ACT: 21 + 0.6× 5 = 24. In Figure 2.23, we can see that Ann tends to do better
with respect to everyone else than Tom did, so her score was better.

SAT ACT
Mean 1500 21
SD 300 5

Table 2.22: Mean and standard deviation for the SAT and ACT.

Example 2.32 used a standardization technique called a Z score, a method most com-
monly employed for nearly normal observations but that may be used with any distribution.
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X

900 1200 1500 1800 2100

Ann

11 16 21 26 31

Tom

Figure 2.23: Ann’s and Tom’s scores shown with the distributions of SAT
and ACT scores.

The Z score of an observation is defined as the number of standard deviations it falls aboveZ
Z score, the
standardized
observation

or below the mean. If the observation is one standard deviation above the mean, its Z score
is 1. If it is 1.5 standard deviations below the mean, then its Z score is -1.5. If x is an
observation from a distribution N(µ, σ), we define the Z score mathematically as

Z =
x− µ
σ

Using µSAT = 1500, σSAT = 300, and xAnn = 1800, we find Ann’s Z score:

ZAnn =
xAnn − µSAT

σSAT
=

1800− 1500

300
= 1

The Z score
The Z score of an observation is the number of standard deviations it falls above
or below the mean. We compute the Z score for an observation x that follows a
distribution with mean µ and standard deviation σ using

Z =
x− µ
σ

⊙
Guided Practice 2.33 Use Tom’s ACT score, 24, along with the ACT mean and
standard deviation to compute his Z score.24

Observations above the mean always have positive Z scores while those below the
mean have negative Z scores. If an observation is equal to the mean (e.g. SAT score of
1500), then the Z score is 0.

23(a) N(µ = 5, σ = 3). (b) N(µ = −100, σ = 10). (c) N(µ = 2, σ = 9).
24ZTom = xTom−µACT

σACT
= 24−21

5
= 0.6
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⊙
Guided Practice 2.34 Let X represent a random variable from N(µ = 3, σ = 2),
and suppose we observe x = 5.19. (a) Find the Z score of x. (b) Use the Z score to
determine how many standard deviations above or below the mean x falls.25

⊙
Guided Practice 2.35 Head lengths of brushtail possums follow a nearly normal
distribution with mean 92.6 mm and standard deviation 3.6 mm. Compute the Z
scores for possums with head lengths of 95.4 mm and 85.8 mm.26

We can use Z scores to roughly identify which observations are more unusual than
others. One observation x1 is said to be more unusual than another observation x2 if the
absolute value of its Z score is larger than the absolute value of the other observation’s Z
score: |Z1| > |Z2|. This technique is especially insightful when a distribution is symmetric.⊙

Guided Practice 2.36 Which of the observations in Guided Practice 2.35 is more
unusual?27

2.6.3 Normal probability table

 Example 2.37 Ann from Example 2.32 earned a score of 1800 on her SAT with a
corresponding Z = 1. She would like to know what percentile she falls in among all
SAT test-takers.

Ann’s percentile is the percentage of people who earned a lower SAT score than
Ann. We shade the area representing those individuals in Figure 2.24. The total area
under the normal curve is always equal to 1, and the proportion of people who scored
below Ann on the SAT is equal to the area shaded in Figure 2.24: 0.8413. In other
words, Ann is in the 84th percentile of SAT takers.

600 900 1200 1500 1800 2100 2400

Figure 2.24: The normal model for SAT scores, shading the area of those
individuals who scored below Ann.

We can use the normal model to find percentiles. A normal probability table,
which lists Z scores and corresponding percentiles, can be used to identify a percentile
based on the Z score (and vice versa). Statistical software can also be used.

25(a) Its Z score is given by Z = x−µ
σ

= 5.19−3
2

= 2.19/2 = 1.095. (b) The observation x is 1.095
standard deviations above the mean. We know it must be above the mean since Z is positive.

26For x1 = 95.4 mm: Z1 = x1−µ
σ

= 95.4−92.6
3.6

= 0.78. For x2 = 85.8 mm: Z2 = 85.8−92.6
3.6

= −1.89.
27Because the absolute value of Z score for the second observation is larger than that of the first, the

second observation has a more unusual head length.
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negative Z

Y

positive Z

Figure 2.25: The area to the left of Z represents the percentile of the
observation.

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

...
...

...
...

...
...

...
...

...
...

...

Table 2.26: A section of the normal probability table. The percentile for
a normal random variable with Z = 0.43 has been highlighted, and the
percentile closest to 0.8000 has also been highlighted.

A normal probability table is given in Appendix C.1 on page 339 and abbreviated in
Table 2.26. We use this table to identify the percentile corresponding to any particular
Z score. For instance, the percentile of Z = 0.43 is shown in row 0.4 and column 0.03
in Table 2.26: 0.6664, or the 66.64th percentile. Generally, we round Z to two decimals,
identify the proper row in the normal probability table up through the first decimal, and
then determine the column representing the second decimal value. The intersection of this
row and column is the percentile of the observation.

We can also find the Z score associated with a percentile. For example, to identify Z
for the 80th percentile, we look for the value closest to 0.8000 in the middle portion of the
table: 0.7995. We determine the Z score for the 80th percentile by combining the row and
column Z values: 0.84.

⊙
Guided Practice 2.38 Determine the proportion of SAT test takers who scored
better than Ann on the SAT.28

28If 84% had lower scores than Ann, the number of people who had better scores must be 16%. (Generally
ties are ignored when the normal model, or any other continuous distribution, is used.)
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2.6.4 Normal probability examples

Cumulative SAT scores are approximated well by a normal model, N(µ = 1500, σ = 300).

 Example 2.39 Shannon is a randomly selected SAT taker, and nothing is known
about Shannon’s SAT aptitude. What is the probability Shannon scores at least 1630
on her SATs?

First, always draw and label a picture of the normal distribution. (Drawings need
not be exact to be useful.) We are interested in the chance she scores above 1630, so
we shade this upper tail:

900 1500 2100

The picture shows the mean and the values at 2 standard deviations above and below
the mean. The simplest way to find the shaded area under the curve makes use of the
Z score of the cutoff value. With µ = 1500, σ = 300, and the cutoff value x = 1630,
the Z score is computed as

Z =
x− µ
σ

=
1630− 1500

300
=

130

300
= 0.43

We look up the percentile of Z = 0.43 in the normal probability table shown in
Table 2.26 or in Appendix C.1 on page 339, which yields 0.6664. However, the
percentile describes those who had a Z score lower than 0.43. To find the area above
Z = 0.43, we compute one minus the area of the lower tail:

1.0000 0.6664 = 0.3336

The probability Shannon scores at least 1630 on the SAT is 0.3336.

TIP: always draw a picture first, and find the Z score second
For any normal probability situation, always always always draw and label the
normal curve and shade the area of interest first. The picture will provide an
estimate of the probability.

After drawing a figure to represent the situation, identify the Z score for the obser-
vation of interest.

⊙
Guided Practice 2.40 If the probability of Shannon scoring at least 1630 is
0.3336, then what is the probability she scores less than 1630? Draw the normal
curve representing this exercise, shading the lower region instead of the upper one.29

29We found the probability in Example 2.39: 0.6664. A picture for this exercise is represented by the
shaded area below “0.6664” in Example 2.39.
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 Example 2.41 Edward earned a 1400 on his SAT. What is his percentile?

First, a picture is needed. Edward’s percentile is the proportion of people who do not
get as high as a 1400. These are the scores to the left of 1400.

900 1500 2100

Identifying the mean µ = 1500, the standard deviation σ = 300, and the cutoff for
the tail area x = 1400 makes it easy to compute the Z score:

Z =
x− µ
σ

=
1400− 1500

300
= −0.33

Using the normal probability table, identify the row of −0.3 and column of 0.03,
which corresponds to the probability 0.3707. Edward is at the 37th percentile.⊙
Guided Practice 2.42 Use the results of Example 2.41 to compute the proportion
of SAT takers who did better than Edward. Also draw a new picture.30

TIP: areas to the right
The normal probability table in most books gives the area to the left. If you would
like the area to the right, first find the area to the left and then subtract this amount
from one.

⊙
Guided Practice 2.43 Stuart earned an SAT score of 2100. Draw a picture for
each part. (a) What is his percentile? (b) What percent of SAT takers did better
than Stuart?31

Based on a sample of 100 men,32 the heights of male adults between the ages 20 and
62 in the US is nearly normal with mean 70.0” and standard deviation 3.3”.⊙

Guided Practice 2.44 Mike is 5’7” and Jim is 6’4”. (a) What is Mike’s height
percentile? (b) What is Jim’s height percentile? Also draw one picture for each part.33

30If Edward did better than 37% of SAT takers, then about 63% must have done better than him.

900 1500 2100

31Numerical answers: (a) 0.9772. (b) 0.0228.
32This sample was taken from the USDA Food Commodity Intake Database.
33First put the heights into inches: 67 and 76 inches. Figures are shown below. (a) ZMike = 67−70

3.3
=

−0.91 → 0.1814. (b) ZJim = 76−70
3.3

= 1.82 → 0.9656.

67 70

Mike

70 76

Jim
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The last several problems have focused on finding the probability or percentile for a
particular observation. What if you would like to know the observation corresponding to a
particular percentile?

 Example 2.45 Erik’s height is at the 40th percentile. How tall is he?

As always, first draw the picture.

63.4 70 76.6

  40%
(0.40)

In this case, the lower tail probability is known (0.40), which can be shaded on the
diagram. We want to find the observation that corresponds to this value. As a first
step in this direction, we determine the Z score associated with the 40th percentile.

Because the percentile is below 50%, we know Z will be negative. Looking in the
negative part of the normal probability table, we search for the probability inside the
table closest to 0.4000. We find that 0.4000 falls in row −0.2 and between columns
0.05 and 0.06. Since it falls closer to 0.05, we take this one: Z = −0.25.

Knowing ZErik = −0.25 and the population parameters µ = 70 and σ = 3.3 inches,
the Z score formula can be set up to determine Erik’s unknown height, labeled xErik:

−0.25 = ZErik =
xErik − µ

σ
=
xErik − 70

3.3

Solving for xErik yields the height 69.18 inches. That is, Erik is about 5’9” (this is
notation for 5-feet, 9-inches).

 Example 2.46 What is the adult male height at the 82nd percentile?

Again, we draw the figure first.

63.4 70 76.6

  82%
(0.82)

  18%
(0.18)

Next, we want to find the Z score at the 82nd percentile, which will be a positive
value. Looking in the Z table, we find Z falls in row 0.9 and the nearest column is
0.02, i.e. Z = 0.92. Finally, the height x is found using the Z score formula with the
known mean µ, standard deviation σ, and Z score Z = 0.92:

0.92 = Z =
x− µ
σ

=
x− 70

3.3

This yields 73.04 inches or about 6’1” as the height at the 82nd percentile.
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⊙
Guided Practice 2.47 (a) What is the 95th percentile for SAT scores? (b) What
is the 97.5th percentile of the male heights? As always with normal probability
problems, first draw a picture.34

⊙
Guided Practice 2.48 (a) What is the probability that a randomly selected male
adult is at least 6’2” (74 inches)? (b) What is the probability that a male adult is
shorter than 5’9” (69 inches)?35

 Example 2.49 What is the probability that a random adult male is between 5’9”
and 6’2”?

These heights correspond to 69 inches and 74 inches. First, draw the figure. The area
of interest is no longer an upper or lower tail.

63.4 70 76.6

The total area under the curve is 1. If we find the area of the two tails that are not
shaded (from Guided Practice 2.48, these areas are 0.3821 and 0.1131), then we can
find the middle area:

1.0000 0.3821 0.1131 0.5048

That is, the probability of being between 5’9” and 6’2” is 0.5048.⊙
Guided Practice 2.50 What percent of SAT takers get between 1500 and 2000?36

⊙
Guided Practice 2.51 What percent of adult males are between 5’5” and 5’7”?37

2.6.5 68-95-99.7 rule

Here, we present a useful rule of thumb for the probability of falling within 1, 2, and 3
standard deviations of the mean in the normal distribution. This will be useful in a wide
range of practical settings, especially when trying to make a quick estimate without a
calculator or Z table.

34Remember: draw a picture first, then find the Z score. (We leave the pictures to you.) The Z score
can be found by using the percentiles and the normal probability table. (a) We look for 0.95 in the
probability portion (middle part) of the normal probability table, which leads us to row 1.6 and (about)
column 0.05, i.e. Z95 = 1.65. Knowing Z95 = 1.65, µ = 1500, and σ = 300, we setup the Z score formula:
1.65 = x95−1500

300
. We solve for x95: x95 = 1995. (b) Similarly, we find Z97.5 = 1.96, again setup the Z

score formula for the heights, and calculate x97.5 = 76.5.
35Numerical answers: (a) 0.1131. (b) 0.3821.
36This is an abbreviated solution. (Be sure to draw a figure!) First find the percent who get below 1500

and the percent that get above 2000: Z1500 = 0.00 → 0.5000 (area below), Z2000 = 1.67 → 0.0475 (area
above). Final answer: 1.0000− 0.5000− 0.0475 = 0.4525.

375’5” is 65 inches. 5’7” is 67 inches. Numerical solution: 1.000− 0.0649− 0.8183 = 0.1168, i.e. 11.68%.
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µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

99.7%

95%

68%

Figure 2.27: Probabilities for falling within 1, 2, and 3 standard deviations
of the mean in a normal distribution.

⊙
Guided Practice 2.52 Use the Z table to confirm that about 68%, 95%, and
99.7% of observations fall within 1, 2, and 3, standard deviations of the mean in the
normal distribution, respectively. For instance, first find the area that falls between
Z = −1 and Z = 1, which should have an area of about 0.68. Similarly there should
be an area of about 0.95 between Z = −2 and Z = 2.38

It is possible for a normal random variable to fall 4, 5, or even more standard deviations
from the mean. However, these occurrences are very rare if the data are nearly normal. The
probability of being further than 4 standard deviations from the mean is about 1-in-30,000.
For 5 and 6 standard deviations, it is about 1-in-3.5 million and 1-in-1 billion, respectively.⊙

Guided Practice 2.53 SAT scores closely follow the normal model with mean
µ = 1500 and standard deviation σ = 300. (a) About what percent of test takers
score 900 to 2100? (b) What percent score between 1500 and 2100?39

2.6.6 Evaluating the normal approximation

Many processes can be well approximated by the normal distribution. We have already seen
two good examples: SAT scores and the heights of US adult males. While using a normal
model can be extremely convenient and helpful, it is important to remember normality is
always an approximation. Testing the appropriateness of the normal assumption is a key
step in many data analyses.

Example 2.45 suggests the distribution of heights of US males is well approximated
by the normal model. We are interested in proceeding under the assumption that the data
are normally distributed, but first we must check to see if this is reasonable.

There are two visual methods for checking the assumption of normality, which can be
implemented and interpreted quickly. The first is a simple histogram with the best fitting
normal curve overlaid on the plot, as shown in the left panel of Figure 2.28. The sample

38First draw the pictures. To find the area between Z = −1 and Z = 1, use the normal probability
table to determine the areas below Z = −1 and above Z = 1. Next verify the area between Z = −1 and
Z = 1 is about 0.68. Repeat this for Z = −2 to Z = 2 and also for Z = −3 to Z = 3.

39(a) 900 and 2100 represent two standard deviations above and below the mean, which means about
95% of test takers will score between 900 and 2100. (b) Since the normal model is symmetric, then half

of the test takers from part (a) ( 95%
2

= 47.5% of all test takers) will score 900 to 1500 while 47.5% score
between 1500 and 2100.
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Male heights (inches)
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Figure 2.28: A sample of 100 male heights. The observations are rounded
to the nearest whole inch, explaining why the points appear to jump in
increments in the normal probability plot.

mean x̄ and standard deviation s are used as the parameters of the best fitting normal
curve. The closer this curve fits the histogram, the more reasonable the normal model
assumption. Another more common method is examining a normal probability plot.40,
shown in the right panel of Figure 2.28. The closer the points are to a perfect straight line,
the more confident we can be that the data follow the normal model.

 Example 2.54 Three data sets of 40, 100, and 400 samples were simulated from
a normal distribution, and the histograms and normal probability plots of the data
sets are shown in Figure 2.29. These will provide a benchmark for what to look for
in plots of real data.

The left panels show the histogram (top) and normal probability plot (bottom) for
the simulated data set with 40 observations. The data set is too small to really see
clear structure in the histogram. The normal probability plot also reflects this, where
there are some deviations from the line. However, these deviations are not strong.

The middle panels show diagnostic plots for the data set with 100 simulated obser-
vations. The histogram shows more normality and the normal probability plot shows
a better fit. While there is one observation that deviates noticeably from the line, it
is not particularly extreme.

The data set with 400 observations has a histogram that greatly resembles the normal
distribution, while the normal probability plot is nearly a perfect straight line. Again
in the normal probability plot there is one observation (the largest) that deviates
slightly from the line. If that observation had deviated 3 times further from the line,
it would be of much greater concern in a real data set. Apparent outliers can occur
in normally distributed data but they are rare.

Notice the histograms look more normal as the sample size increases, and the normal
probability plot becomes straighter and more stable.

40Also commonly called a quantile-quantile plot.
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Figure 2.29: Histograms and normal probability plots for three simulated
normal data sets; n = 40 (left), n = 100 (middle), n = 400 (right).

 Example 2.55 Are NBA player heights normally distributed? Consider all 435
NBA players from the 2008-9 season presented in Figure 2.30. 41

We first create a histogram and normal probability plot of the NBA player heights.
The histogram in the left panel is slightly left skewed, which contrasts with the
symmetric normal distribution. The points in the normal probability plot do not
appear to closely follow a straight line but show what appears to be a “wave”. We can
compare these characteristics to the sample of 400 normally distributed observations
in Example 2.54 and see that they represent much stronger deviations from the normal
model. NBA player heights do not appear to come from a normal distribution.

 Example 2.56 Can we approximate poker winnings by a normal distribution? We
consider the poker winnings of an individual over 50 days. A histogram and normal
probability plot of these data are shown in Figure 2.31.

The data are very strongly right skewed in the histogram, which corresponds to the
very strong deviations on the upper right component of the normal probability plot.
If we compare these results to the sample of 40 normal observations in Example 2.54,
it is apparent that these data show very strong deviations from the normal model.

41These data were collected from http://www.nba.com.

http://www.nba.com
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Figure 2.30: Histogram and normal probability plot for the NBA heights
from the 2008-9 season.
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Figure 2.31: A histogram of poker data with the best fitting normal plot
and a normal probability plot.
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Figure 2.32: Four normal probability plots for Guided Practice 2.57.

⊙
Guided Practice 2.57 Determine which data sets represented in Figure 2.32 plau-
sibly come from a nearly normal distribution. Are you confident in all of your con-
clusions? There are 100 (top left), 50 (top right), 500 (bottom left), and 15 points
(bottom right) in the four plots.42

⊙
Guided Practice 2.58 Figure 2.33 shows normal probability plots for two distri-
butions that are skewed. One distribution is skewed to the low end (left skewed) and
the other to the high end (right skewed). Which is which?43

42Answers may vary a little. The top-left plot shows some deviations in the smallest values in the data
set; specifically, the left tail of the data set has some outliers we should be wary of. The top-right and
bottom-left plots do not show any obvious or extreme deviations from the lines for their respective sample
sizes, so a normal model would be reasonable for these data sets. The bottom-right plot has a consistent
curvature that suggests it is not from the normal distribution. If we examine just the vertical coordinates
of these observations, we see that there is a lot of data between -20 and 0, and then about five observations
scattered between 0 and 70. This describes a distribution that has a strong right skew.

43Examine where the points fall along the vertical axis. In the first plot, most points are near the low
end with fewer observations scattered along the high end; this describes a distribution that is skewed to
the high end. The second plot shows the opposite features, and this distribution is skewed to the low end.
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Figure 2.33: Normal probability plots for Guided Practice 2.58.

2.7 Applying the normal model

The approach for using the normal model in the context of inference is very similar to the
practice of applying the model to individual observations that are nearly normal. We will
replace null distributions we previously obtained using the randomization or simulation
techniques and verify the results once again using the normal model. When the sample size
is sufficiently large, this approximation generally provides us with the same conclusions.

2.7.1 Standard error

Point estimates vary from sample to sample, and we quantify this variability with what is
called the standard error (SE). The standard error is equal to the standard deviation
associated with the estimate. So, for example, if we used the standard deviation to quantify
the variability of a point estimate from one sample to the next, this standard deviation
would be called the standard error of the point estimate.

The way we determine the standard error varies from one situation to the next. How-
ever, typically it is determined using a formula based on the Central Limit Theorem.

2.7.2 Normal model application: opportunity cost

In Section 2.2 we were introduced to the opportunity cost study, which found that students
became thriftier when they were reminded that not spending money now means the money
can be spent on other things in the future. Let’s re-analyze the data in the context of the
normal distribution and compare the results.

Figure 2.34 summarizes the null distribution as determined using the randomization
method. The best fitting normal distribution for the null distribution has a mean of 0. We
can calculate the standard error of this distribution by borrowing a formula that we will
become familiar with in Section 3.2, but for now let’s just take the value SE = 0.078 as
a given. Recall that the point estimate of the difference was 0.20, as shown in the plot.
Next, we’ll use the normal distribution approach to compute the two-tailed p-value.

As we learned in Section 2.6, it is helpful to draw and shade a picture of the normal
distribution so we know precisely what we want to calculate. Here we want to find the area
of the two tails representing the p-value.
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−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
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difference

Simulated difference in proportions of students who do not buy the DVD

Figure 2.34: Null distribution of differences with an overlaid normal curve
for the opportunity cost study. 10,000 simulations were run for this figure.

−0.23 −0.16 −0.08 0 0.08 0.16 0.23

Next, we can calculate the Z score using the observed difference, 0.20, and the two model
parameters. The standard error, SE = 0.078, is the equivalent of the model’s standard
deviation.

Z =
observed difference− 0

SE
=

0.20− 0

0.078
= 2.56

We can either look up Z = 2.56 in the normal probability table or use statistical software to
determine the right tail area: 0.0052, which is about the same as what we got for the right
tail using the randomization approach (0.0065). Doubling this value yields the total area
in the two tails and the p-value for the hypothesis test: 0.01. As before, since the p-value
is less than 0.05, we conclude that the treatment did indeed impact students’ spending.

Z score in a hypothesis test
In the context of a hypothesis test, the Z score for a point estimate is

Z =
point estimate− null value

SE

The standard error in this case is the equivalent of the standard deviation of the
point estimate, and the null value comes from the null hypothesis.
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p̂sim    
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Figure 2.35: The null distribution for p̂, created from 10,000 simulated
studies, along with the best-fitting normal model.

We have confirmed that the randomization approach we used earlier and the normal
distribution approach provide almost identical p-values and conclusions in the opportunity
cost case study. Next, let’s turn our attention to the medical consultant case study.

2.7.3 Normal model application: medical consultant

In Section 2.4 we learned about a medical consultant who reported that only 3 of her 62
clients who underwent a liver transplant had complications, which is less than the more
common complication rate of 0.10. As in the other case studies, we identified a suitable null
distribution using a simulation approach, as shown in Figure 2.35. Here we have added the
best-fitting normal curve to the figure, which has a mean of 0.10. Borrowing a formula that
we’ll encounter in Chapter 3, the standard error of this distribution was also computed:
SE = 0.038.

In the previous analysis, we obtained a p-value of 0.2444, and we will try to reproduce
that p-value using the normal distribution approach. However, before we begin, we want to
point out a simple detail that is easy to overlook: the null distribution we earlier generated
is slightly skewed, and the distribution isn’t that smooth. In fact, the normal distribution
only sort-of fits this model. We’ll discuss this discrepancy more in a moment.

We’ll again begin by creating a picture. Here a normal distribution centered at 0.10
with a standard error of 0.038.

0.02 0.10 0.18

Next, we can calculate the Z score using the observed complication rate, p̂ = 0.048 along
with the mean and standard deviation of the normal model. Here again, we use the standard
error for the standard deviation.

Z =
p̂− p0

SEp̂
=

0.048− 0.10

0.038
= −1.37
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Identifying Z = −1.37 in the normal probability table or using statistical software, we can
determine that the left tail area is 0.0853. Doubling this value yields the total area in
the two tails: about 0.17. This is the estimated p-value for the hypothesis test. However,
there’s a problem: this is very different than the earlier p-value we computed: 0.2444.

The discrepancy is explained by normal model’s poor representation of the null dis-
tribution in Figure 2.35. As noted earlier, the null distribution from the simulations is not
very smooth, and the distribution itself is slightly skewed. That’s the bad news. The good
news is that we can foresee these problems using some simple checks. We’ll learn about
these checks in the following chapters.

In Section 2.5 we noted that the two common requirements to apply the Central Limit
Theorem are (1) the observations in the sample must be independent, and (2) the sample
must be sufficiently large. The guidelines for this particular situation – which we will learn
in Section 3.1 – would have alerted us that the normal model was a poor approximation.

2.7.4 Conditions for applying the normal model

The success story in this section was the application of the normal model in the context of
the opportunity cost data. However, the biggest lesson comes from our failed attempt to
use the normal approximation in the medical consultant case study.

Statistical techniques are like a carpenter’s tools. When used responsibly, they can
produce amazing and precise results. However, if the tools are applied irresponsibly or
under inappropriate conditions, they will produce unreliable results. For this reason, with
every statistical method that we introduce in future chapters, we will carefully outline
conditions when the method can reasonably be used. These conditions should be checked
in each application of the technique.

2.8 Confidence intervals

A point estimate provides a single plausible value for a parameter. However, a point
estimate is rarely perfect; usually there is some error in the estimate. In addition to
supplying a point estimate of a parameter, a next logical step would be to provide a
plausible range of values for the parameter.

2.8.1 Capturing the population parameter

A plausible range of values for the population parameter is called a confidence interval.
Using only a point estimate is like fishing in a murky lake with a spear, and using a
confidence interval is like fishing with a net. We can throw a spear where we saw a fish,
but we will probably miss. On the other hand, if we toss a net in that area, we have a good
chance of catching the fish.

If we report a point estimate, we probably will not hit the exact population parameter.
On the other hand, if we report a range of plausible values – a confidence interval – we
have a good shot at capturing the parameter.⊙

Guided Practice 2.59 If we want to be very certain we capture the population
parameter, should we use a wider interval or a smaller interval?44

44If we want to be more certain we will capture the fish, we might use a wider net. Likewise, we use a
wider confidence interval if we want to be more certain that we capture the parameter.



2.8. CONFIDENCE INTERVALS 103

2.8.2 Constructing a 95% confidence interval

A point estimate is our best guess for the value of the parameter, so it makes sense to build
the confidence interval around that value. The standard error, which is a measure of the
uncertainty associated with the point estimate, provides a guide for how large we should
make the confidence interval.

Constructing a 95% confidence interval
When the sampling distribution of a point estimate can reasonably be modeled as
normal, the point estimate we observe will be within 1.96 standard errors of the
true value of interest about 95% of the time. Thus, a 95% confidence interval
for such a point estimate can be constructed:

point estimate ± 1.96× SE (2.60)

We can be 95% confident this interval captures the true value.

⊙
Guided Practice 2.61 Compute the area between -1.96 and 1.96 for a normal
distribution with mean 0 and standard deviation 1. 45

 Example 2.62 The point estimate from the opportunity cost study was that 20%
fewer students would buy a DVD if they were reminded that money not spent now
could be spent later on something else. The point estimate from this study can
reasonably be modeled with a normal distribution, and a proper standard error for
this point estimate is SE = 0.078. Construct a 95% confidence interval.46

Since the conditions for the normal approximation have already been verified, we can
move forward with the construction of the 95% confidence interval:

point estimate ± 1.96× SE → 0.20 ± 1.96× 0.078 → (0.047, 0.353)

We are 95% confident that the DVD purchase rate resulting from the treatment
is between 4.7% and 35.3% lower than in the control group. Since this confidence
interval does not contain 0, it is consistent with our earlier result where we rejected
the notion of “no difference” using a hypothesis test.

In Section 1.1 we encountered an experiment that examined whether implanting a
stent in the brain of a patient at risk for a stroke helps reduce the risk of a stroke. The
results from the first 30 days of this study, which included 451 patients, are summarized
in Table 2.36. These results are surprising! The point estimate suggests that patients who
received stents may have a higher risk of stroke: ptrmt − pctrl = 0.090.

45We will leave it to you to draw a picture. The Z scores are Zleft = −1.96 and Zright = 1.96. The
area between these two Z scores is 0.9750− 0.0250 = 0.9500. This is where “1.96” comes from in the 95%
confidence interval formula.

46We’ve used SE = 0.078 from the last section. However, it would more generally be appropriate
to recompute the SE slightly differently for this confidence interval using the technique introduced in
Section 3.2.1. Don’t worry about this detail for now since the two resulting standard errors are, in this
case, almost identical.
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stroke no event Total
treatment 33 191 224
control 13 214 227
Total 46 405 451

Table 2.36: Descriptive statistics for 30-day results for the stent study.

 Example 2.63 Consider the stent study and results. The conditions necessary to
ensure the point estimate ptrmt−pctrl = 0.090 is nearly normal have been verified for
you, and the estimate’s standard error is SE = 0.028. Construct a 95% confidence
interval for the change in 30-day stroke rates from usage of the stent.

The conditions for applying the normal model have already been verified, so we can
proceed to the construction of the confidence interval:

point estimate ± 1.96× SE → 0.090 ± 1.96× 0.028 → (0.035, 0.145)

We are 95% confident that implanting a stent in a stroke patient’s brain increased
the risk of stroke within 30 days by a rate of 0.035 to 0.145. This confidence interval
can also be used in a way analogous to a hypothesis test: since the interval does
not contain 0, it means the data provide statistically significant evidence that the
stent used in the study increases the risk of stroke, contrary to what researchers had
expected before this study was published!

As with hypothesis tests, confidence intervals are imperfect. About 1-in-20 prop-
erly constructed 95% confidence intervals will fail to capture the parameter of interest.
Figure 2.37 shows 25 confidence intervals for a proportion that were constructed from sim-
ulations where the true proportion was p = 0.3. However, 1 of these 25 confidence intervals
happened not to include the true value.

0.25 p = 0.30 0.35
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Figure 2.37: Twenty-five samples of size n = 300 were simulated when
p = 0.30. For each sample, a confidence interval was created to try to
capture the true proportion p. However, 1 of these 25 intervals did not
capture p = 0.30.
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⊙
Guided Practice 2.64 In Figure 2.37, one interval does not contain the true
proportion, p = 0.3. Does this imply that there was a problem with the simulations
run?47

2.8.3 Changing the confidence level

Suppose we want to consider confidence intervals where the confidence level is somewhat
higher than 95%: perhaps we would like a confidence level of 99%. Think back to the
analogy about trying to catch a fish: if we want to be more sure that we will catch the fish,
we should use a wider net. To create a 99% confidence level, we must also widen our 95%
interval. On the other hand, if we want an interval with lower confidence, such as 90%, we
could make our original 95% interval slightly slimmer.

The 95% confidence interval structure provides guidance in how to make intervals with
new confidence levels. Below is a general 95% confidence interval for a point estimate that
comes from a nearly normal distribution:

point estimate ± 1.96× SE (2.65)

There are three components to this interval: the point estimate, “1.96”, and the standard
error. The choice of 1.96× SE was based on capturing 95% of the data since the estimate
is within 1.96 standard errors of the true value about 95% of the time. The choice of 1.96
corresponds to a 95% confidence level.

⊙
Guided Practice 2.66 If X is a normally distributed random variable, how often
will X be within 2.58 standard deviations of the mean?48

To create a 99% confidence interval, change 1.96 in the 95% confidence interval formula
to be 2.58. Guided Practice 2.66 highlights that 99% of the time a normal random variable
will be within 2.58 standard deviations of its mean. This approach – using the Z scores in
the normal model to compute confidence levels – is appropriate when the point estimate
is associated with a normal distribution and we can properly compute the standard error.
Thus, the formula for a 99% confidence interval is

point estimate ± 2.58× SE (2.67)

The normal approximation is crucial to the precision of these confidence intervals. The
next two chapters provides detailed discussions about when the normal model can safely
be applied to a variety of situations. When the normal model is not a good fit, we will use
alternative distributions that better characterize the sampling distribution.

47No. Just as some observations occur more than 1.96 standard deviations from the mean, some point
estimates will be more than 1.96 standard errors from the parameter. A confidence interval only provides
a plausible range of values for a parameter. While we might say other values are implausible based on the
data, this does not mean they are impossible.

48This is equivalent to asking how often the Z score will be larger than -2.58 but less than 2.58. (For a
picture, see Figure 2.38.) To determine this probability, look up -2.58 and 2.58 in the normal probability
table (0.0049 and 0.9951). Thus, there is a 0.9951− 0.0049 ≈ 0.99 probability that the unobserved random
variable X will be within 2.58 standard deviations of the mean.
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standard deviations from the mean

−3 −2 −1 0 1 2 3

95%, extends −1.96 to 1.96

99%, extends −2.58 to 2.58

Figure 2.38: The area between -z? and z? increases as |z?| becomes larger.
If the confidence level is 99%, we choose z? such that 99% of the normal
curve is between -z? and z?, which corresponds to 0.5% in the lower tail
and 0.5% in the upper tail: z? = 2.58.

⊙
Guided Practice 2.68 Create a 99% confidence interval for the impact of the
stent on the risk of stroke using the data from Example 2.63. The point estimate is
0.090, and the standard error is SE = 0.028. It has been verified for you that the
point estimate can reasonably be modeled by a normal distribution.49

Confidence interval for any confidence level
If the point estimate follows the normal model with standard error SE, then a
confidence interval for the population parameter is

point estimate ± z? × SE

where z? corresponds to the confidence level selected.

Figure 2.38 provides a picture of how to identify z? based on a confidence level. We
select z? so that the area between -z? and z? in the normal model corresponds to the
confidence level.

Margin of error
In a confidence interval, z? × SE is called the margin of error.

49Since the necessary conditions for applying the normal model have already been checked for us, we can
go straight to the construction of the confidence interval: point estimate ± 2.58 × SE → (0.018, 0.162).
We are 99% confident that implanting a stent in the brain of a patient who is at risk of stroke increases
the risk of stroke within 30 days by a rate of 0.018 to 0.162 (assuming the patients are representative of
the population).



2.8. CONFIDENCE INTERVALS 107

⊙
Guided Practice 2.69 In Example 2.63 we found that implanting a stent in
the brain of a patient at risk for a stroke increased the risk of a stroke. The study
estimated a 9% increase in the number of patients who had a stroke, and the standard
error of this estimate was about SE = 2.8%. Compute a 90% confidence interval for
the effect.50

2.8.4 Interpreting confidence intervals

A careful eye might have observed the somewhat awkward language used to describe con-
fidence intervals. Correct interpretation:

We are XX% confident that the population parameter is between...

Incorrect language might try to describe the confidence interval as capturing the population
parameter with a certain probability. This is one of the most common errors: while it might
be useful to think of it as a probability, the confidence level only quantifies how plausible
it is that the parameter is in the interval.

Another especially important consideration of confidence intervals is that they only
try to capture the population parameter. Our intervals say nothing about the confidence
of capturing individual observations, a proportion of the observations, or about capturing
point estimates. Confidence intervals only attempt to capture population parameters.

50We must find z? such that 90% of the distribution falls between -z? and z? in the standard normal
model, N(µ = 0, σ = 1). We can look up -z? in the normal probability table by looking for a lower
tail of 5% (the other 5% is in the upper tail), thus z? = 1.65. The 90% confidence interval can then be
computed as point estimate ± 1.65×SE → (4.4%, 13.6%). (Note: the conditions for normality had earlier
been confirmed for us.) That is, we are 90% confident that implanting a stent in a stroke patient’s brain
increased the risk of stroke within 30 days by 4.4% to 13.6%.
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2.9 Exercises

2.9.1 Randomization case study: gender discrimination

2.1 Side effects of Avandia, Part I. Rosiglitazone is the active ingredient in the controversial
type 2 diabetes medicine Avandia and has been linked to an increased risk of serious cardiovascular
problems such as stroke, heart failure, and death. A common alternative treatment is pioglitazone,
the active ingredient in a diabetes medicine called Actos. In a nationwide retrospective observa-
tional study of 227,571 Medicare beneficiaries aged 65 years or older, it was found that 2,593 of
the 67,593 patients using rosiglitazone and 5,386 of the 159,978 using pioglitazone had serious
cardiovascular problems. These data are summarized in the contingency table below.51

Cardiovascular problems
Yes No Total

Treatment
Rosiglitazone 2,593 65,000 67,593
Pioglitazone 5,386 154,592 159,978
Total 7,979 219,592 227,571

Determine if each of the following statements is true or false. If false, explain why. Be careful: The
reasoning may be wrong even if the statement’s conclusion is correct. In such cases, the statement
should be considered false.

(a) Since more patients on pioglitazone had cardiovascular problems (5,386 vs. 2,593), we can
conclude that the rate of cardiovascular problems for those on a pioglitazone treatment is
higher.

(b) The data suggest that diabetic patients who are taking rosiglitazone are more likely to have
cardiovascular problems since the rate of incidence was (2,593 / 67,593 = 0.038) 3.8% for
patients on this treatment, while it was only (5,386 / 159,978 = 0.034) 3.4% for patients on
pioglitazone.

(c) The fact that the rate of incidence is higher for the rosiglitazone group proves that rosiglitazone
causes serious cardiovascular problems.

(d) Based on the information provided so far, we cannot tell if the difference between the rates of
incidences is due to a relationship between the two variables or due to chance.

51D.J. Graham et al. “Risk of acute myocardial infarction, stroke, heart failure, and death in elderly
Medicare patients treated with rosiglitazone or pioglitazone”. In: JAMA 304.4 (2010), p. 411. issn:
0098-7484.
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2.2 Heart transplants, Part II. Exercise 1.50 introduces the Stanford Heart Transplant Study.
Of the 34 patients in the control group, 4 were alive at the end of the study. Of the 69 patients in
the treatment group, 24 were alive. The contingency table below summarizes these results.

Group
Control Treatment Total

Alive 4 24 28
Outcome

Dead 30 45 75
Total 34 69 103

(a) What proportion of patients in the treatment group and what proportion of patients in the
control group died?

(b) One approach for investigating whether or not the treatment is effective is to use a random-
ization technique.

i. What are the claims being tested? Use the same null and alternative hypothesis notation
used in the section.

ii. The paragraph below describes the set up for such approach, if we were to do it with-
out using statistical software. Fill in the blanks with a number or phrase, whichever is
appropriate.

We write alive on cards representing patients who were alive at
the end of the study, and dead on cards representing patients
who were not. Then, we shuffle these cards and split them into two groups:
one group of size representing treatment, and another group of
size representing control. We calculate the difference between
the proportion of dead cards in the treatment and control groups (treatment -
control) and record this value. We repeat this many times to build a distribution
centered at . Lastly, we calculate the fraction of simulations where
the simulated differences in proportions are . If this fraction is low,
we conclude that it is unlikely to have observed such an outcome by chance and
that the null hypothesis should be rejected in favor of the alternative.

iii. What do the simulation results shown below suggest about the effectiveness of the trans-
plant program?

Simulated differences in proportions
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2.9.2 Randomization case study: opportunity cost

2.3 Side effects of Avandia, Part II. Exercise 2.1 introduces a study that compares the
rates of serious cardiovascular problems for diabetic patients on rosiglitazone and pioglitazone
treatments. The table below summarizes the results of the study.

Cardiovascular problems
Yes No Total

Treatment
Rosiglitazone 2,593 65,000 67,593
Pioglitazone 5,386 154,592 159,978
Total 7,979 219,592 227,571

(a) What proportion of all patients had cardiovascular problems?

(b) If the type of treatment and having cardiovascular problems were independent (null hypothe-
sis), about how many patients in the rosiglitazone group would we expect to have had cardio-
vascular problems?

(c) We can investigate the relationship between outcome and treatment in this study using a
randomization technique. While in reality we would carry out the simulations required for
randomization using statistical software, suppose we actually simulate using index cards. In
order to simulate from the null hypothesis, which states that the outcomes were independent
of the treatment, we write whether or not each patient had a cardiovascular problem on cards,
shuffled all the cards together, then deal them into two groups of size 67,593 and 159,978.
We repeat this simulation 10,000 times and each time record the number of people in the
rosiglitazone group who had cardiovascular problems. Below is a relative frequency histogram
of these counts.

i. What are the claims being tested?

ii. Compared to the number calculated in part (b), which would provide more support for
the alternative hypothesis, more or fewer patients with cardiovascular problems in the
rosiglitazone group?

iii. What do the simulation results suggest about the relationship between taking rosiglitazone
and having cardiovascular problems in diabetic patients?

Simulated rosiglitazone cardiovascular events 
under the null hypothesis

2250 2350 2450 2550

0

0.05

0.1
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2.4 Sinusitis and antibiotics, Part II. Researchers studying the effect of antibiotic treatment
compared to symptomatic treatment for acute sinusitis randomly assigned 166 adults diagnosed
with sinusitis into two groups (as discussed in Exercise 1.2). Participants in the antibiotic group
received a 10-day course of an antibiotic, and the rest received symptomatic treatments as a
placebo. These pills had the same taste and packaging as the antibiotic. At the end of the 10-day
period patients were asked if they experienced improvement in symptoms since the beginning of
the study. The distribution of responses is summarized below.52

Self-reported
improvement in symptoms
Yes No Total

Antibiotic 66 19 85
Treatment

Placebo 65 16 81
Total 131 35 166

(a) What type of a study is this?

(b) Does this study make use of blinding?

(c) Compute the difference in the proportions of patients who self-reported an improvement in
symptoms in the two groups: p̂antibiotic − p̂placebo.

(d) At first glance, does antibiotic or placebo appear to be more effective for the treatment of
sinusitis? Explain your reasoning using appropriate statistics.

(e) There are two competing claims that this study is used to compare: the null hypothesis that
the antibiotic has no impact and the alternative hypothesis that it has an impact. Write out
these competing claims in easy-to-understand language and in the context of the application.

(f) Below is a histogram of simulation results computed under the null hypothesis. In each
simulation, the summary value reported was the number of patients who received antibiotics
and self-reported an improvement in symptoms. Write a conclusion for the hypothesis test
in plain language. (Hint: Does the value observed in the study, 66, seem unusual in this
distribution generated under the null hypothesis?)

Simulated number of antibiotic patients
who self−reported an improvement

under the null hypothesis

60 65 70 75

0

0.05

0.1

52J.M. Garbutt et al. “Amoxicillin for Acute Rhinosinusitis: A Randomized Controlled Trial”. In:
JAMA: The Journal of the American Medical Association 307.7 (2012), pp. 685–692.

http://jama.jamanetwork.com/article.aspx?articleid=1104985
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2.9.3 Hypothesis testing

2.5 Social experiment, Part I. A “social experiment” conducted by a TV program questioned
what people do when they see a very obviously bruised woman getting picked on by her boyfriend.
On two different occasions at the same restaurant, the same couple was depicted. In one scenario
the woman was dressed “provocatively” and in the other scenario the woman was dressed “conser-
vatively”. The table below shows how many restaurant diners were present under each scenario,
and whether or not they intervened.

Scenario
Provocative Conservative Total

Intervene
Yes 5 15 20
No 15 10 25
Total 20 25 45

A simulation was conducted to test if people react differently under the two scenarios. 10,000
simulated differences were generated to construct the null distribution shown. The value p̂pr,sim
represents the proportion of diners who intervened in the simulation for the provocatively dressed
woman, and p̂con,sim is the proportion for the conservatively dressed woman.

p̂pr_sim − p̂con_sim    

−0.4 −0.2 0.0 0.2 0.4

0

0.1

0.2

(a) What are the hypotheses? For the purposes of this exercise, you may assume that each
observed person at the restaurant behaved independently, though we would want to evaluate
this assumption more rigorously if we were reporting these results.

(b) Calculate the observed difference between the rates of intervention under the provocative and
conservative scenarios: p̂pr − p̂con.

(c) Estimate the p-value using the figure above and determine the conclusion of the hypothesis
test.
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2.6 Is yawning contagious, Part I. An experiment conducted by the MythBusters, a science
entertainment TV program on the Discovery Channel, tested if a person can be subconsciously
influenced into yawning if another person near them yawns. 50 people were randomly assigned to
two groups: 34 to a group where a person near them yawned (treatment) and 16 to a group where
there wasn’t a person yawning near them (control). The following table shows the results of this
experiment.53

Group
Treatment Control Total

Result
Yawn 10 4 14
Not Yawn 24 12 36
Total 34 16 50

A simulation was conducted to understand the distribution of the test statistic under the assump-
tion of independence: having someone yawn near another person has no influence on if the other
person will yawn. In order to conduct the simulation, a researcher wrote yawn on 14 index cards
and not yawn on 36 index cards to indicate whether or not a person yawned. Then he shuffled
the cards and dealt them into two groups of size 34 and 16 for treatment and control, respectively.
He counted how many participants in each simulated group yawned in an apparent response to a
nearby yawning person, and calculated the difference between the simulated proportions of yawn-
ing as p̂trtmt,sim − p̂ctrl,sim. This simulation was repeated 10,000 times using software to obtain
10,000 differences that are due to chance alone. The histogram shows the distribution of the
simulated differences.

p̂trtmt − p̂ctrl    

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0

0.1

0.2

(a) What are the hypotheses?

(b) Calculate the observed difference between the yawning rates under the two scenarios.

(c) Estimate the p-value using the figure above and determine the conclusion of the hypothesis
test.

53MythBusters, Season 3, Episode 28.

http://www.yourdiscovery.com/video/mythbusters-top-10-is-yawning-contagious
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2.7 Social experiment, Part II. In Exercise 2.5, we encountered a scenario where researchers
were evaluating the impact of the way someone is dressed against the actions of people around
them. In that exercise, researchers may have believed that dressing provocatively may reduce the
chance of bystander intervention. One might be tempted to use a one-sided hypothesis test for
this study. Discuss the drawbacks of doing so in 1-3 sentences.

2.8 Is yawning contagious, Part II. Exercise 2.6 describes an experiment by Myth Busters,
where they examined whether a person yawning would affect whether others to yawn. The tra-
ditional belief is that yawning is contagious – one yawn can lead to another yawn, which might
lead to another, and so on. In that exercise, there was the option of selecting a one-sided or
two-sided test. Which would you recommend (or which did you choose)? Justify your answer in
1-3 sentences.

2.9.4 Simulation case studies

2.9 The Egyptian Revolution. A popular uprising that started on January 25, 2011 in Egypt
led to the 2011 Egyptian Revolution. Polls show that about 69% of American adults followed the
news about the political crisis and demonstrations in Egypt closely during the first couple weeks
following the start of the uprising. Among a random sample of 30 high school students, it was
found that only 17 of them followed the news about Egypt closely during this time.54

(a) Write the hypotheses for testing if the proportion of high school students who followed the
news about Egypt is different than the proportion of American adults who did.

(b) Calculate the proportion of high schoolers in this sample who followed the news about Egypt
closely during this time.

(c) Describe how to perform a simulation and, once you had results, how to estimate the p-value.

(d) Below is a histogram showing the distribution of p̂sim in 10,000 simulations under the null
hypothesis. Estimate the p-value using the plot and determine the conclusion of the hypothesis
test.

p̂sim    

0.4 0.6 0.8 1.0

0

0.05

0.10

0.15

2.10 Assisted Reproduction. Assisted Reproductive Technology (ART) is a collection of
techniques that help facilitate pregnancy (e.g. in vitro fertilization). A 2008 report by the Centers
for Disease Control and Prevention estimated that ART has been successful in leading to a live
birth in 31% of cases55. A new fertility clinic claims that their success rate is higher than average.
A random sample of 30 of their patients yielded a success rate of 40%. A consumer watchdog
group would like to determine if this provides strong evidence to support the company’s claim.

(a) Write the hypotheses to test if the success rate for ART at this clinic is significantly higher
than the success rate reported by the CDC.

54Gallup Politics, Americans’ Views of Egypt Sharply More Negative, data collected February 2-5, 2011.
55CDC. 2008 Assisted Reproductive Technology Report.

http://www.gallup.com/poll/146003/americans-views-egypt-sharply-negative.aspx
http://www.cdc.gov/art/ART2008/index.htm
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(b) Describe a setup for a simulation that would be appropriate in this situation and how the
p-value can be calculated using the simulation results.

(c) Below is a histogram showing the distribution of p̂sim in 10,000 simulations under the null
hypothesis. Estimate the p-value using the plot and use it to evaluate the hypotheses.

(d) After performing this analysis, the consumer group releases the following news headline: “In-
fertility clinic falsely advertises better success rates”. Comment on the appropriateness of this
statement.

p̂sim    

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.05

0.10

0.15

2.9.5 Central Limit Theorem

2.11 Distribution of p̂. Suppose the true population proportion were p = 0.1. The figure below
shows what the distribution of a sample proportion looks like when the sample size is n = 20,
n = 100, and n = 500. What does each point (observation) in each of the samples represent?
Describe how the distribution of the sample proportion, p̂, changes as n becomes larger.

0.0 0.1 0.2 0.3 0.4

0.0 0.1 0.2 0.3 0.4

0.0 0.1 0.2 0.3 0.4
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2.12 Distribution of p̂. Suppose the true population proportion were p = 0.5. The figure below
shows what the distribution of a sample proportion looks like when the sample size is n = 20,
n = 100, and n = 500. What does each point (observation) in each of the samples represent?
Describe how the distribution of the sample proportion, p̂, changes as n becomes larger.

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

2.13 Distribution of p̂. Suppose the true population proportion were p = 0.95. The figure
below shows what the distribution of a sample proportion looks like when the sample size is n = 20,
n = 100, and n = 500. What does each point (observation) in each of the samples represent?
Describe how the distribution of the sample proportion, p̂, changes as n becomes larger.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.70 0.75 0.80 0.85 0.90 0.95 1.00

2.14 Re-examining the distributions of past exercises. Examine the distributions shown
in Exercises 2.3, 2.4, 2.5, 2.6, 2.9, and 2.10. Which distributions look symmetric and bell-shaped?
Which appear to be overly “discrete” (not very smooth)?
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2.9.6 Normal distribution

2.15 Area under the curve, I. What percent of a standard normal distributionN(µ = 0, σ = 1)
is found in each region? Be sure to draw a graph.

(a) Z < −1.35 (b) Z > 1.48 (c) −0.4 < Z < 1.5 (d) |Z| > 2

2.16 Area under the curve, II. What percent of a standard normal distribution N(µ = 0, σ =
1) is found in each region? Be sure to draw a graph.

(a) Z > −1.13 (b) Z < 0.18 (c) Z > 8 (d) |Z| < 0.5

2.17 Scores on the GRE, Part I. A college senior who took the Graduate Record Examination
exam scored 620 on the Verbal Reasoning section and 670 on the Quantitative Reasoning section.
The mean score for Verbal Reasoning section was 462 with a standard deviation of 119, and the
mean score for the Quantitative Reasoning was 584 with a standard deviation of 151. Suppose
that both distributions are nearly normal.

(a) Write down the short-hand for these two normal distributions.

(b) What is her Z score on the Verbal Reasoning section? On the Quantitative Reasoning section?
Draw a standard normal distribution curve and mark these two Z scores.

(c) What do these Z scores tell you?

(d) Relative to others, which section did she do better on?

(e) Find her percentile scores for the two exams.

(f) What percent of the test takers did better than her on the Verbal Reasoning section? On the
Quantitative Reasoning section?

(g) Explain why simply comparing her raw scores from the two sections would lead to the incorrect
conclusion that she did better on the Quantitative Reasoning section.

(h) If the distributions of the scores on these exams are not nearly normal, would your answers to
parts (b) - (f) change? Explain your reasoning.

2.18 Triathlon times, Part I. In triathlons, it is common for racers to be placed into age
and gender groups. Friends Leo and Mary both completed the Hermosa Beach Triathlon, where
Leo competed in the Men, Ages 30 - 34 group while Mary competed in the Women, Ages 25 -
29 group. Leo completed the race in 1:22:28 (4948 seconds), while Mary completed the race in
1:31:53 (5513 seconds). Obviously Leo finished faster, but they are curious about how they did
within their respective groups. Can you help them? Here is some information on the performance
of their groups:

• The finishing times of the Men, Ages 30 - 34 group has a mean of 4313 seconds with a
standard deviation of 583 seconds.

• The finishing times of the Women, Ages 25 - 29 group has a mean of 5261 seconds with a
standard deviation of 807 seconds.

• The distributions of finishing times for both groups are approximately Normal.

Remember: a better performance corresponds to a faster finish.

(a) Write down the short-hand for these two normal distributions.

(b) What are the Z scores for Leo’s and Mary’s finishing times? What do these Z scores tell you?

(c) Did Leo or Mary rank better in their respective groups? Explain your reasoning.

(d) What percent of the triathletes did Leo finish faster than in his group?

(e) What percent of the triathletes did Mary finish faster than in her group?

(f) If the distributions of finishing times are not nearly normal, would your answers to parts (b)
- (e) change? Explain your reasoning.
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2.19 GRE scores, Part II. In Exercise 2.17 we saw two distributions for GRE scores: N(µ =
462, σ = 119) for the verbal part of the exam and N(µ = 584, σ = 151) for the quantitative part.
Use this information to compute each of the following:

(a) The score of a student who scored in the 80th percentile on the Quantitative Reasoning section.

(b) The score of a student who scored worse than 70% of the test takers in the Verbal Reasoning
section.

2.20 Triathlon times, Part II. In Exercise 2.18 we saw two distributions for triathlon times:
N(µ = 4313, σ = 583) for Men, Ages 30 - 34 and N(µ = 5261, σ = 807) for the Women, Ages 25
- 29 group. Times are listed in seconds. Use this information to compute each of the following:

(a) The cutoff time for the fastest 5% of athletes in the men’s group, i.e. those who took the
shortest 5% of time to finish.

(b) The cutoff time for the slowest 10% of athletes in the women’s group.

2.21 Temperatures in LA, Part I. The average daily high temperature in June in LA is 77◦F
with a standard deviation of 5◦F. Suppose that the temperatures in June closely follow a normal
distribution.

(a) What is the probability of observing an 83◦F temperature or higher in LA during a randomly
chosen day in June?

(b) How cold are the coldest 10% of the days during June in LA?

2.22 Portfolio returns. The Capital Asset Pricing Model is a financial model that assumes
returns on a portfolio are normally distributed. Suppose a portfolio has an average annual return
of 14.7% (i.e. an average gain of 14.7%) with a standard deviation of 33%. A return of 0% means
the value of the portfolio doesn’t change, a negative return means that the portfolio loses money,
and a positive return means that the portfolio gains money.

(a) What percent of years does this portfolio lose money, i.e. have a return less than 0%?

(b) What is the cutoff for the highest 15% of annual returns with this portfolio?

2.23 Temperatures in LA, Part II. Exercise 2.21 states that average daily high temperature
in June in LA is 77◦F with a standard deviation of 5◦F, and it can be assumed that they to follow
a normal distribution. We use the following equation to convert ◦F (Fahrenheit) to ◦C (Celsius):

C = (F − 32)× 5

9
.

(a) Write the probability model for the distribution of temperature in ◦C in June in LA.

(b) What is the probability of observing a 28◦C (which roughly corresponds to 83◦F) temperature
or higher in June in LA? Calculate using the ◦C model from part (a).

(c) Did you get the same answer or different answers in part (b) of this question and part (a) of
Exercise 2.21? Are you surprised? Explain.

2.24 Heights of 10 year olds. Heights of 10 year olds, regardless of gender, closely follow a
normal distribution with mean 55 inches and standard deviation 6 inches.

(a) What is the probability that a randomly chosen 10 year old is shorter than 48 inches?

(b) What is the probability that a randomly chosen 10 year old is between 60 and 65 inches?

(c) If the tallest 10% of the class is considered “very tall”, what is the height cutoff for “very
tall”?

(d) The height requirement for Batman the Ride at Six Flags Magic Mountain is 54 inches. What
percent of 10 year olds cannot go on this ride?
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2.25 Auto insurance premiums. Suppose a newspaper article states that the distribution
of auto insurance premiums for residents of California is approximately normal with a mean of
$1,650. The article also states that 25% of California residents pay more than $1,800.

(a) What is the Z score that corresponds to the top 25% (or the 75th percentile) of the standard
normal distribution?

(b) What is the mean insurance cost? What is the cutoff for the 75th percentile?

(c) Identify the standard deviation of insurance premiums in LA.

2.26 Speeding on the I-5, Part I. The distribution of passenger vehicle speeds traveling on
the Interstate 5 Freeway (I-5) in California is nearly normal with a mean of 72.6 miles/hour and
a standard deviation of 4.78 miles/hour.56

(a) What percent of passenger vehicles travel slower than 80 miles/hour?

(b) What percent of passenger vehicles travel between 60 and 80 miles/hour?

(c) How fast do the fastest 5% of passenger vehicles travel?

(d) The speed limit on this stretch of the I-5 is 70 miles/hour. Approximate what percentage of
the passenger vehicles travel above the speed limit on this stretch of the I-5.

2.27 Overweight baggage. Suppose weights of the checked baggage of airline passengers
follow a nearly normal distribution with mean 45 pounds and standard deviation 3.2 pounds.
Most airlines charge a fee for baggage that weigh in excess of 50 pounds. Determine what percent
of airline passengers incur this fee.

2.28 Find the SD. Find the standard deviation of the distribution in the following situations.

(a) MENSA is an organization whose members have IQs in the top 2% of the population. IQs
are normally distributed with mean 100, and the minimum IQ score required for admission to
MENSA is 132.

(b) Cholesterol levels for women aged 20 to 34 follow an approximately normal distribution with
mean 185 milligrams per deciliter (mg/dl). Women with cholesterol levels above 220 mg/dl
are considered to have high cholesterol and about 18.5% of women fall into this category.

2.29 Buying books on Ebay. The textbook you need to buy for your chemistry class is expen-
sive at the college bookstore, so you consider buying it on Ebay instead. A look at past auctions
suggest that the prices of that chemistry textbook have an approximately normal distribution with
mean $89 and standard deviation $15.

(a) What is the probability that a randomly selected auction for this book closes at more than
$100?

(b) Ebay allows you to set your maximum bid price so that if someone outbids you on an auction
you can automatically outbid them, up to the maximum bid price you set. If you are only
bidding on one auction, what are the advantages and disadvantages of setting a bid price too
high or too low? What if you are bidding on multiple auctions?

(c) If you watched 10 auctions, roughly what percentile might you use for a maximum bid cutoff
to be somewhat sure that you will win one of these ten auctions? Is it possible to find a cutoff
point that will ensure that you win an auction?

(d) If you are willing to track up to ten auctions closely, about what price might you use as your
maximum bid price if you want to be somewhat sure that you will buy one of these ten books?

56S. Johnson and D. Murray. “Empirical Analysis of Truck and Automobile Speeds on Rural Interstates:
Impact of Posted Speed Limits”. In: Transportation Research Board 89th Annual Meeting. 2010.

http://comp.uark.edu/~sjohnson/New%20Folder/SLJ%20Pub%20Paper%2010-0833.pdf
http://comp.uark.edu/~sjohnson/New%20Folder/SLJ%20Pub%20Paper%2010-0833.pdf
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2.30 SAT scores. SAT scores (out of 2400) are distributed normally with a mean of 1500 and
a standard deviation of 300. Suppose a school council awards a certificate of excellence to all
students who score at least 1900 on the SAT, and suppose we pick one of the recognized students
at random. What is the probability this student’s score will be at least 2100? (The material
covered in Section A.2 would be useful for this question.)

2.31 Scores on stats final, Part I. Below are final exam scores of 20 Introductory Statistics
students.

1

57,
2

66,
3

69,
4

71,
5

72,
6

73,
7

74,
8

77,
9

78,
10

78,
11

79,
12

79,
13

81,
14

81,
15

82,
16

83,
17

83,
18

88,
19

89,
20

94

The mean score is 77.7 points. with a standard deviation of 8.44 points. Use this information to
determine if the scores approximately follow the 68-95-99.7% Rule.

2.32 Heights of female college students, Part I. Below are heights of 25 female college
students.

1

54,
2

55,
3

56,
4

56,
5

57,
6

58,
7

58,
8

59,
9

60,
10

60,
11

60,
12

61,
13

61,
14

62,
15

62,
16

63,
17

63,
18

63,
19

64,
20

65,
21

65,
22

67,
23

67,
24

69,
25

73

The mean height is 61.52 inches with a standard deviation of 4.58 inches. Use this information to
determine if the heights approximately follow the 68-95-99.7% Rule.

2.33 Scores on stats final, Part II. Exercise 2.31 lists the final exam scores of 20 Introductory
Statistics students. Do these data appear to follow a normal distribution? Explain your reasoning
using the graphs provided below.
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2.34 Heights of female college students, Part II. Exercise 2.32 lists the heights of 25 female
college students. Do these data appear to follow a normal distribution? Explain your reasoning
using the graphs provided below.

Heights
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2.9.7 Applying the normal model

2.35 Side effects of Avandia, Part III. Exercise 2.1 introduces a study that compares the
rates of serious cardiovascular problems for diabetic patients on rosiglitazone and pioglitazone
treatments. The table below summarizes the results of the study.

Cardiovascular problems
Yes No Total

Treatment
Rosiglitazone 2,593 65,000 67,593
Pioglitazone 5,386 154,592 159,978
Total 7,979 219,592 227,571

(a) Write a set of hypotheses comparing the rates for cardiovascular problems for the two treat-
ments.

(b) Compute the observed difference in rates for cardiovascular problems in the two treatments.

(c) This study is a suitable candidate for applying a normal distribution. If there really was no
difference in the rates of cardiovascular problems and the two drugs under consideration, we
can use a normal model with mean 0 and standard error 0.00084. Using this model, compute
an appropriate p-value.

(d) Write a suitable conclusion based on your p-value. Use a significance level of α = 0.01.

2.36 Crime concerns in China. A 2013 poll found that 24% of Chinese adults see crime as
a very big problem, and the standard error for this estimate, which can reasonably be modeled
using a normal distribution, is SE = 1.8%.57 Suppose an issue will get special attention from the
Chinese government if more than 1-in-5 Chinese adults express concern on an issue.

(a) Construct hypotheses regarding whether or not crime should receive special attention by the
Chinese government according to the 1-in-5 guideline.

(b) Discuss the appropriateness of using a one-sided or two-sided test for this exercise. Consider:
for this decision process, would we care about one or both directions?

(c) Should crime receive special attention? Use a hypothesis test to justify your answer.

2.9.8 Confidence intervals

2.37 Chronic illness, Part I. In 2013, the Pew Research Foundation reported that “45% of
U.S. adults report that they live with one or more chronic conditions”.58 However, this value was
based on a sample, so it may not be a perfect estimate for the population parameter of interest on
its own. The study reported a standard error of about 1.2%, and a normal model may reasonably
be used in this setting. Create a 95% confidence interval for the proportion of U.S. adults who
live with one or more chronic conditions. Also interpret the confidence interval in the context of
the study.

2.38 Twitter users and news, Part I. A poll conducted in 2013 found that 52% of U.S.
adult Twitter users get at least some news on Twitter.59 The standard error for this estimate was
2.4%, and a normal distribution may be used to model the sample proportion. Construct a 99%
confidence interval for the fraction of U.S. adult Twitter users who get some news on Twitter, and
interpret the confidence interval in context.

57Environmental Concerns on the Rise in China. September 19, 2013. Pew Research.
58The Diagnosis Difference. November 26, 2013. Pew Research.
59Twitter News Consumers: Young, Mobile and Educated. November 4, 2013. Pew Research.

http://www.pewglobal.org/2013/09/19/environmental-concerns-on-the-rise-in-china
http://pewinternet.org/Reports/2013/The-Diagnosis-Difference.aspx
http://www.journalism.org/2013/11/04/twitter-news-consumers-young-mobile-and-educated
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2.39 Chronic illness, Part II. In 2013, the Pew Research Foundation reported that “45% of
U.S. adults report that they live with one or more chronic conditions”, and the standard error
for this estimate is 1.2%. Identify each of the following statements as true or false. Provide an
explanation to justify each of your answers.

(a) We can say with certainty that the confidence interval from Exerise 2.37 contains the true
percentage of U.S. adults who suffer from a chronic illness.

(b) If we repeated this study 1,000 times and constructed a 95% confidence interval for each study,
then approximately 950 of those confidence intervals would contain the true fraction of U.S.
adults who suffer from chronic illnesses.

(c) The poll provides statistically significant evidence (at the α = 0.05 level) that the percentage
of U.S. adults who suffer from chronic illnesses is below 50%.

(d) Since the standard error is 1.2%, only 1.2% of people in the study communicated uncertainty
about their answer.

2.40 Twitter users and news, Part II. A poll conducted in 2013 found that 52% of U.S.
adult Twitter users get at least some news on Twitter, and the standard error for this estimate
was 2.4%. Identify each of the following statements as true or false. Provide an explanation to
justify each of your answers.

(a) The data provide statistically significant evidence that more than half of U.S. adult Twitter
users get some news through Twitter. Use a significance level of α = 0.01.

(b) Since the standard error is 2.4%, we can conclude that 97.6% of all U.S. adult Twitter users
were included in the study.

(c) If we want to reduce the standard error of the estimate, we should collect less data.

(d) If we construct a 90% confidence interval for the percentage of U.S. adults Twitter users who
get some news through Twitter, this confidence interval will be wider than a corresponding
99% confidence interval.



Chapter 3

Inference for categorical data

Chapter 3 provides a more complete framework for statistical techniques suitable for cate-
gorical data. We’ll continue working with the normal model in the context of inference for
proportions, and we’ll also encounter a new technique and distribution suitable for working
with frequency and contingency tables in Sections 3.3 and 3.4.

3.1 Inference for a single proportion

Before we get started, we’ll introduce a little terminology and notation.

In the tappers-listeners study, one person tapped a tune on the table and the listener
tried to guess the game. In this study, each game can be thought of as a trial. We could
label each trial a success if the listener successfully guessed the tune, and we could label
a trial a failure if the listener was unsuccessful.

Trial, success, and failure
A single event that leads to an outcome can be called a trial. If the trial has two
possible outcomes, e.g. heads or tails when flipping a coin, we typically label one
of those outcome a success and the other a failure. The choice of which outcome is
labeled a success and which a failure is arbitrary, and it will not impact the results
of our analyses.

When a proportion is recorded, it is common to use a 1 to represent a “success” and
a 0 to represent a “failure” and then write down a key to communicate what each value
represents. This notation is also convenient for calculations. For example, if we have 10
trials with 6 success (1’s) and 4 failures (0’s), the sample proportion can be computed using
the mean of the zeros and ones:

p̂ =
1 + 1 + 1 + 1 + 1 + 1 + 0 + 0 + 0 + 0

10
= 0.6

Next we’ll take a look at when we can apply our normal distribution framework to the
distribution of the sample proportion, p̂.

123
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3.1.1 When the sample proportion is nearly normal

Conditions for when the sampling distribution of p̂ is nearly normal
The sampling distribution for p̂, taken from a sample of size n from a population
with a true proportion p, is nearly normal when

1. the sample observations are independent and

2. we expected to see at least 10 successes and 10 failures in our sample, i.e.
np ≥ 10 and n(1− p) ≥ 10. This is called the success-failure condition.

If these conditions are met, then the sampling distribution of p̂ is nearly normal
with mean p and standard error

SEp̂ =

√
p(1− p)

n
(3.1)

p̂
sample
proportion

p
population
proportion

Typically we do not know the true proportion, p, so we substitute some value to check
conditions and to estimate the standard error. For confidence intervals, usually p̂ is used to
check the success-failure condition and compute the standard error. For hypothesis tests,
typically the null value p0 is used in place of p. Examples are presented for each of these
cases in Sections 3.1.2 and 3.1.3.

TIP: Reminder on checking independence of observations
If data come from a simple random sample and consist of less than 10% of the
population, then the independence assumption is reasonable. Or, for example, if
the data come from an experiment where each user was randomly assigned to the
treatment or control group and users do not interact, then the observations in each
group are typically independent.

3.1.2 Confidence intervals for a proportion

According to a New York Times / CBS News poll in June 2012, only about 44% of the
American public approves of the job the Supreme Court is doing.1 This poll included
responses of 976 randomly sampled adults.

We want a confidence interval for the proportion of Americans who approve of the
job the Supreme Court is doing. Our point estimate, based on a simple random sample
of size n = 976 from the NYTimes/CBS poll, is p̂ = 0.44. To use our confidence interval
formula from Section 2.8, we must first check whether the sampling distribution of p̂ is
nearly normal and calculate the standard error of the estimate.

The data are based on a simple random sample and consist of far fewer than 10% of the
U.S. population, so independence is confirmed. The sample size must also be sufficiently
large, which is checked via the success-failure condition: there were approximately 976×p̂ =
429 “successes” and 976×(1−p̂) = 547 “failures” in the sample, both easily greater than 10.

With the conditions met, we are assured that the sampling distribution of p̂ is nearly
normal. Next, a standard error for p̂ is needed, and then we can employ the usual method
to construct a confidence interval.

1nytimes.com/2012/06/08/us/politics/44-percent-of-americans-approve-of-supreme-court-in-new-poll.html

http://www.nytimes.com/2012/06/08/us/politics/44-percent-of-americans-approve-of-supreme-court-in-new-poll.html
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⊙
Guided Practice 3.2 Estimate the standard error of p̂ = 0.44 using Equa-
tion (3.1). Because p is unknown and the standard error is for a confidence interval,
use p̂ in place of p. 2

 Example 3.3 Construct a 95% confidence interval for p, the proportion of Ameri-
cans who approve of the job the Supreme Court is doing.

Using the standard error estimate from Guided Practice 3.2, the point estimate 0.44,
and z? = 1.96 for a 95% confidence interval, the confidence interval can be computed
as

point estimate ± z?SE → 0.44 ± 1.96× 0.016 → (0.409, 0.471)

We are 95% confident that the true proportion of Americans who approve of the job
of the Supreme Court (in June 2012) is between 0.409 and 0.471. At the time this
poll was taken, we can say with high confidence that the job approval of the Supreme
Court was below 50%.

Constructing a confidence interval for a proportion

• Verify the observations are independent and also verify the success-failure
condition using p̂ and n.

• If the conditions are met, then the Central Limit Theorem applies, and the
sampling distribution of p̂ is well-approximated by the normal model.

• Construct the standard error using p̂ in place of p and apply the general
confidence interval formula.

3.1.3 Hypothesis testing for a proportion

To apply the same normal distribution framework in the context of a hypothesis test for
a proportion, the independence and success-failure conditions must also be satisfied. How-
ever, in a hypothesis test, the success-failure condition is checked using the null proportion:
we verify np0 and n(1− p0) are at least 10, where p0 is the null value.

⊙
Guided Practice 3.4 Deborah Toohey is running for Congress, and her campaign
manager claims she has more than 50% support from the district’s electorate. Ms.
Toohey’s opponent claimed that Ms. Toohey has less than 50%. Set up a hypothesis
test to evaluate who is right.3

2SE =
√
p(1−p)
n

≈
√
p̂(1−p̂)
n

=
√

0.44(1−0.44)
976

= 0.016
3We should run a two-sided.H0: Ms. Toohey’s support is 50%. p = 0.50. HA: Ms. Toohey’s support

is either above or below 50%. p 6= 0.50.
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 Example 3.5 A newspaper collects a simple random sample of 500 likely voters in
the district and estimates Toohey’s support to be 52%. Does this provide convincing
evidence for the claim of Toohey’s manager at the 5% significance level?

Because this is a simple random sample that includes fewer than 10% of the popu-
lation, the observations are independent. In a one-proportion hypothesis test, the
success-failure condition is checked using the null proportion, p0 = 0.5: np0 =
n(1 − p0) = 500 × 0.5 = 250 > 10. With these conditions verified, the normal
model may be applied to p̂.

Next the standard error can be computed. The null value is used again here, because
this is a hypothesis test for a single proportion.

SE =

√
p0 × (1− p0)

n
=

√
0.5× (1− 0.5)

500
= 0.022

A picture of the normal model is shown in Figure 3.1 with the p-value represented
by both shaded tails. Based on the normal model, we can compute a test statistic as
the Z score of the point estimate:

Z =
point estimate− null value

SE
=

0.52− 0.50

0.022
= 0.89

The right tail area is 0.1867, and the p-value is 2 × 0.1867 = 0.3734. Because the
p-value is larger than 0.05, we do not reject the null hypothesis, and we do not find
convincing evidence to support the campaign manager’s claim.

0.5 0.52

Figure 3.1: Sampling distribution of the sample proportion if the null hy-
pothesis is true for Example 3.5. The p-value for the test is shaded.

Hypothesis test for a proportion
Set up hypotheses and verify the conditions using the null value, p0, to ensure p̂
is nearly normal under H0. If the conditions hold, construct the standard error,
again using p0, and show the p-value in a drawing. Lastly, compute the p-value
and evaluate the hypotheses.
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3.1.4 Choosing a sample size when estimating a proportion

Frequently statisticians find themselves in a position to not only analyze data, but to help
others determine how to most effectively collect data and also how much data should be
collected. We can perform sample size calculations that are helpful in planning a study.
Our task will be to identify an appropriate sample size that ensures the margin of error
ME = z?SE will be no larger than some value m. For example, we might be asked to find
a sample size so the margin of error is no larger than m = 0.04, in which case, we write

z?SE ≤ 0.04

Generally, we plug in a suitable value for z? for the confidence level we plan to use, write
in the formula for the standard error, and then solve for the sample size n. In the case of
a single proportion, we use

√
p(1− p)/n for the standard error (SE).

 Example 3.6 If we are conducting a university survey to determine whether stu-
dents support a $200 per year increase in fees to pay for a new football stadium, how
big of a sample is needed to ensure the margin of error is less than 0.04 using a 95%
confidence level?

For a 95% confidence level, the value z? corresponds to 1.96, and we can write the
margin of error expression as follows:

ME = z?SE = 1.96×
√
p(1− p)

n
≤ 0.04

There are two unknowns in the equation: p and n. If we have an estimate of p,
perhaps from a similar survey, we could use that value. If we have no such estimate,
we must use some other value for p. The margin of error for a proportion is largest
when p is 0.5, so we typically use this worst case estimate if no other estimate is
available:

1.96×
√

0.5(1− 0.5)

n
≤ 0.04

1.962 × 0.5(1− 0.5)

n
≤ 0.042

1.962 × 0.5(1− 0.5)

0.042
≤ n

600.25 ≤ n

We would need at least 600.25 participants, which means we need 601 participants
or more, to ensure the sample proportion is within 0.04 of the true proportion with
95% confidence. Notice that in such calculations, we always round up for the sample
size!

As noted in the example, if we have an estimate of the proportion, we should use it
in place of the worst case estimate of the proportion, 0.5.
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⊙
Guided Practice 3.7 A manager is about to oversee the mass production of a
new tire model in her factory, and she would like to estimate what proportion of these
tires will be rejected through quality control. The quality control team has monitored
the last three tire models produced by the factory, failing 1.7% of tires in the first
model, 6.2% of the second model, and 1.3% of the third model. The manager would
like to examine enough tires to estimate the failure rate of the new tire model to
within about 2% with a 90% confidence level.4

(a) There are three different failure rates to choose from. Perform the sample size
computation for each separately, and identify three sample sizes to consider.

(b) The sample sizes vary widely. Which of the three would you suggest using?
What would influence your choice?

⊙
Guided Practice 3.8 A recent estimate of Congress’ approval rating was 17%.5 If
we were to conduct a new poll and wanted an estimate with a margin of error smaller
than about 0.04 with 95% confidence, how big of a sample should we use?6

3.2 Difference of two proportions

We would like to make conclusions about the difference in two population proportions
(p1 − p2) using the normal model. In this section we consider three such examples. In
the first, we compare the approval of the 2010 healthcare law under two different question
phrasings. In the second application, a company weighs whether they should switch to a
higher quality parts manufacturer. In the last example, we examine the cancer risk to dogs
from the use of yard herbicides.

In our investigations, we first identify a reasonable point estimate of p1 − p2 based on
the sample. You may have already guessed its form: p̂1−p̂2. Next, in each example we verify
that the point estimate follows the normal model by checking certain conditions; as before,
these conditions relate to independence of observations and checking for sufficiently large
sample size. Finally, we compute the estimate’s standard error and apply our inferential
framework.

4(a) For the 1.7% estimate of p, we estimate the appropriate sample size as follows:

1.65×
√
p(1− p)

n
≈ 1.65×

√
0.017(1− 0.017)

n
≤ 0.02 → n ≥ 113.7

Using the estimate from the first model, we would suggest examining 114 tires (round up!). A similar
computation can be accomplished using 0.062 and 0.013 for p: 396 and 88.

(b) We could examine which of the old models is most like the new model, then choose the corresponding
sample size. Or if two of the previous estimates are based on small samples while the other is based on a
larger sample, we should consider the value corresponding to the larger sample. (Answers will vary.)

5www.gallup.com/poll/155144/Congress-Approval-June.aspx
6We complete the same computations as before, except now we use 0.17 instead of 0.5 for p:

1.96×
√
p(1− p)

n
≈ 1.96×

√
0.17(1− 0.17)

n
≤ 0.04 → n ≥ 338.8

A sample size of 339 or more would be reasonable.

http://www.gallup.com/poll/155144/Congress-Approval-June.aspx
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3.2.1 Sample distribution of the difference of two proportions

We must check two conditions before applying the normal model to p̂1 − p̂2. First, the
sampling distribution for each sample proportion must be nearly normal, and secondly, the
samples must be independent. Under these two conditions, the sampling distribution of
p̂1 − p̂2 may be well approximated using the normal model.

Conditions for the sampling distribution of p̂1 − p̂2 to be normal
The difference p̂1 − p̂2 tends to follow a normal model when

• each proportion separately follows a normal model, and

• the two samples are independent of each other.

The standard error of the difference in sample proportions is

SEp̂1−p̂2 =
√
SE2

p̂1
+ SE2

p̂2
=

√
p1(1− p1)

n1
+
p2(1− p2)

n2
(3.9)

where p1 and p2 represent the population proportions, and n1 and n2 represent
the sample sizes.

3.2.2 Intervals and tests for p1 − p2

In the setting of confidence intervals, the sample proportions are used to verify the success-
failure condition and also compute standard error, just as was the case with a single pro-
portion.

 Example 3.10 The way a question is phrased can influence a person’s response.
For example, Pew Research Center conducted a survey with the following question:7

As you may know, by 2014 nearly all Americans will be required to have
health insurance. [People who do not buy insurance will pay a penalty]
while [People who cannot afford it will receive financial help from the gov-
ernment]. Do you approve or disapprove of this policy?

For each randomly sampled respondent, the statements in brackets were randomized:
either they were kept in the order given above, or the two statements were reversed.
Table 3.2 shows the results of this experiment. Create and interpret a 90% confidence
interval of the difference in approval.

First the conditions must be verified. Because each group is a simple random sample
from less than 10% of the population, the observations are independent, both within
the samples and between the samples. The success-failure condition also holds for
each sample. Because all conditions are met, the normal model can be used for
the point estimate of the difference in support, where p1 corresponds to the original
ordering and p2 to the reversed ordering:

p̂1 − p̂2 = 0.47− 0.34 = 0.13

7www.people-press.org/2012/03/26/public-remains-split-on-health-care-bill-opposed-to-mandate/.
Sample sizes for each polling group are approximate.

http://www.people-press.org/2012/03/26/public-remains-split-on-health-care-bill-opposed-to-mandate/
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Sample
size (ni)

Approve
law (%)

Disapprove
law (%)

Other

“people who cannot afford it will
receive financial help from the
government” is given second

771 47 49 3

“people who do not buy it will
pay a penalty” is given second

732 34 63 3

Table 3.2: Results for a Pew Research Center poll where the ordering of
two statements in a question regarding healthcare were randomized.

The standard error may be computed from Equation (3.9) using the sample propor-
tions:

SE ≈
√

0.47(1− 0.47)

771
+

0.34(1− 0.34)

732
= 0.025

For a 90% confidence interval, we use z? = 1.65:

point estimate ± z?SE → 0.13 ± 1.65× 0.025 → (0.09, 0.17)

We are 90% confident that the approval rating for the 2010 healthcare law changes
between 9% and 17% due to the ordering of the two statements in the survey question.
The Pew Research Center reported that this modestly large difference suggests that
the opinions of much of the public are still fluid on the health insurance mandate.⊙
Guided Practice 3.11 A remote control car company is considering a new manu-
facturer for wheel gears. The new manufacturer would be more expensive but their
higher quality gears are more reliable, resulting in happier customers and fewer war-
ranty claims. However, management must be convinced that the more expensive
gears are worth the conversion before they approve the switch. If there is strong ev-
idence of a more than 3% improvement in the percent of gears that pass inspection,
management says they will switch suppliers, otherwise they will maintain the current
supplier. Set up appropriate hypotheses for the test.8

 Example 3.12 The quality control engineer from Guided Practice 3.11 collects a
sample of gears, examining 1000 gears from each company and finds that 899 gears
pass inspection from the current supplier and 958 pass inspection from the prospective
supplier. Using these data, evaluate the hypothesis setup of Guided Practice 3.11
using a significance level of 5%.

First, we check the conditions. The sample is not necessarily random, so to pro-
ceed we must assume the gears are all independent; for this sample we will suppose
this assumption is reasonable, but the engineer would be more knowledgeable as to
whether this assumption is appropriate. The success-failure condition also holds for
each sample. Thus, the difference in sample proportions, 0.958− 0.899 = 0.059, can
be said to come from a nearly normal distribution.

8H0: The higher quality gears will pass inspection no more than 3% more frequently than the standard
quality gears. phighQ− pstandard = 0.03. HA: The higher quality gears will pass inspection more than 3%
more often than the standard quality gears. phighQ − pstandard > 0.03.
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0.03 0.059
(null value)

0.006

Figure 3.3: Distribution of the test statistic if the null hypothesis was true.
The p-value is represented by the shaded area.

The standard error can be found using Equation (3.9):

SE =

√
0.958(1− 0.958)

1000
+

0.899(1− 0.899)

1000
= 0.0114

In this hypothesis test, the sample proportions were used. We will discuss this choice
more in Section 3.2.3.

Next, we compute the test statistic and use it to find the p-value, which is depicted
in Figure 3.3.

Z =
point estimate− null value

SE
=

0.059− 0.03

0.0114
= 2.54

Using the normal model for this test statistic, we identify the right tail area as 0.006.
Since this is a one-sided test, this single tail area is also the p-value, and we reject
the null hypothesis because 0.006 is less than 0.05. That is, we have statistically
significant evidence that the higher quality gears actually do pass inspection more
than 3% as often as the currently used gears. Based on these results, management
will approve the switch to the new supplier.

3.2.3 Hypothesis testing when H0 : p1 = p2

Here we use a new example to examine a special estimate of standard error when H0 : p1 =
p2. We investigate whether there is an increased risk of cancer in dogs that are exposed
to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). A study in 1994 examined 491
dogs that had developed cancer and 945 dogs as a control group.9 Of these two groups,
researchers identified which dogs had been exposed to 2,4-D in their owner’s yard. The
results are shown in Table 3.4.

9Hayes HM, Tarone RE, Cantor KP, Jessen CR, McCurnin DM, and Richardson RC. 1991. Case-
Control Study of Canine Malignant Lymphoma: Positive Association With Dog Owner’s Use of 2, 4-
Dichlorophenoxyacetic Acid Herbicides. Journal of the National Cancer Institute 83(17):1226-1231.



132 CHAPTER 3. INFERENCE FOR CATEGORICAL DATA

cancer no cancer
2,4-D 191 304

no 2,4-D 300 641

Table 3.4: Summary results for cancer in dogs and the use of 2,4-D by the
dog’s owner.

⊙
Guided Practice 3.13 Is this study an experiment or an observational study?10

⊙
Guided Practice 3.14 Set up hypotheses to test whether 2,4-D and the occurrence
of cancer in dogs are related. Use a one-sided test and compare across the cancer and
no cancer groups.11

 Example 3.15 Are the conditions met to use the normal model and make inference
on the results?

(1) It is unclear whether this is a random sample. However, if we believe the dogs in
both the cancer and no cancer groups are representative of each respective population
and that the dogs in the study do not interact in any way, then we may find it
reasonable to assume independence between observations. (2) The success-failure
condition holds for each sample.

Under the assumption of independence, we can use the normal model and make
statements regarding the canine population based on the data.

In your hypotheses for Guided Practice 3.14, the null is that the proportion of dogs
with exposure to 2,4-D is the same in each group. The point estimate of the difference in
sample proportions is p̂c − p̂n = 0.067. To identify the p-value for this test, we first check
conditions (Example 3.15) and compute the standard error of the difference:

SE =

√
pc(1− pc)

nc
+
pn(1− pn)

nn

In a hypothesis test, the distribution of the test statistic is always examined as though the
null hypothesis is true, i.e. in this case, pc = pn. The standard error formula should reflect
this equality in the null hypothesis. We will use p to represent the common rate of dogs
that are exposed to 2,4-D in the two groups:

SE =

√
p(1− p)
nc

+
p(1− p)
nn

10The owners were not instructed to apply or not apply the herbicide, so this is an observational study.
This question was especially tricky because one group was called the control group, which is a term usually
seen in experiments.

11Using the proportions within the cancer and no cancer groups may seem odd. We intuitively may
desire to compare the fraction of dogs with cancer in the 2,4-D and no 2,4-D groups, since the herbicide
is an explanatory variable. However, the cancer rates in each group do not necessarily reflect the cancer
rates in reality due to the way the data were collected. For this reason, computing cancer rates may greatly
alarm dog owners.
H0: the proportion of dogs with exposure to 2,4-D is the same in “cancer” and “no cancer” dogs, pc−pn = 0.
HA: dogs with cancer are more likely to have been exposed to 2,4-D than dogs without cancer, pc−pn > 0.
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We don’t know the exposure rate, p, but we can obtain a good estimate of it by pooling
the results of both samples:

p̂ =
# of “successes”

# of cases
=

191 + 304

191 + 300 + 304 + 641
= 0.345

This is called the pooled estimate of the sample proportion, and we use it to compute
the standard error when the null hypothesis is that p1 = p2 (e.g. pc = pn or pc − pn = 0).
We also typically use it to verify the success-failure condition.

Pooled estimate of a proportion
When the null hypothesis is p1 = p2, it is useful to find the pooled estimate of the
shared proportion:

p̂ =
number of “successes”

number of cases
=
p̂1n1 + p̂2n2

n1 + n2

Here p̂1n1 represents the number of successes in sample 1 since

p̂1 =
number of successes in sample 1

n1

Similarly, p̂2n2 represents the number of successes in sample 2.

TIP: Use the pooled proportion estimate when H0 : p1 = p2

When the null hypothesis suggests the proportions are equal, we use the pooled
proportion estimate (p̂) to verify the success-failure condition and also to estimate
the standard error:

SE =

√
p̂(1− p̂)
n1

+
p̂(1− p̂)
n2

(3.16)

⊙
Guided Practice 3.17 Using Equation (3.16), p̂ = 0.345, n1 = 491, and n2 = 945,
verify the estimate for the standard error is SE = 0.026. Next, complete the hypoth-
esis test using a significance level of 0.05. Be certain to draw a picture, compute the
p-value, and state your conclusion in both statistical language and plain language.12

12Compute the test statistic:

Z =
point estimate− null value

SE
=

0.067− 0

0.026
= 2.58

We leave the picture to you. Looking up Z = 2.58 in the normal probability table: 0.9951. However this is
the lower tail, and the upper tail represents the p-value: 1−0.9951 = 0.0049. We reject the null hypothesis
and conclude that dogs getting cancer and owners using 2,4-D are associated.
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3.3 Testing for goodness of fit using chi-square
(special topic)

In this section, we develop a method for assessing a null model when the data are binned.
This technique is commonly used in two circumstances:

• Given a sample of cases that can be classified into several groups, determine if the
sample is representative of the general population.

• Evaluate whether data resemble a particular distribution, such as a normal distribu-
tion or a geometric distribution. (Background on the geometric distribution is not
necessary.)

Each of these scenarios can be addressed using the same statistical test: a chi-square test.
In the first case, we consider data from a random sample of 275 jurors in a small county.

Jurors identified their racial group, as shown in Table 3.5, and we would like to determine
if these jurors are racially representative of the population. If the jury is representative of
the population, then the proportions in the sample should roughly reflect the population
of eligible jurors, i.e. registered voters.

Race White Black Hispanic Other Total
Representation in juries 205 26 25 19 275
Registered voters 0.72 0.07 0.12 0.09 1.00

Table 3.5: Representation by race in a city’s juries and population.

While the proportions in the juries do not precisely represent the population propor-
tions, it is unclear whether these data provide convincing evidence that the sample is not
representative. If the jurors really were randomly sampled from the registered voters, we
might expect small differences due to chance. However, unusually large differences may
provide convincing evidence that the juries were not representative.

A second application, assessing the fit of a distribution, is presented at the end of this
section. Daily stock returns from the S&P500 for the years 1990-2011 are used to assess
whether stock activity each day is independent of the stock’s behavior on previous days.

In these problems, we would like to examine all bins simultaneously, not simply com-
pare one or two bins at a time, which will require us to develop a new test statistic.

3.3.1 Creating a test statistic for one-way tables

 Example 3.18 Of the people in the city, 275 served on a jury. If the individuals
are randomly selected to serve on a jury, about how many of the 275 people would
we expect to be white? How many would we expect to be black?

About 72% of the population is white, so we would expect about 72% of the jurors
to be white: 0.72× 275 = 198.

Similarly, we would expect about 7% of the jurors to be black, which would correspond
to about 0.07× 275 = 19.25 black jurors.⊙
Guided Practice 3.19 Twelve percent of the population is Hispanic and 9%
represent other races. How many of the 275 jurors would we expect to be Hispanic
or from another race? Answers can be found in Table 3.6.
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Race White Black Hispanic Other Total
Observed data 205 26 25 19 275
Expected counts 198 19.25 33 24.75 275

Table 3.6: Actual and expected make-up of the jurors.

The sample proportion represented from each race among the 275 jurors was not a
precise match for any ethnic group. While some sampling variation is expected, we would
expect the sample proportions to be fairly similar to the population proportions if there
is no bias on juries. We need to test whether the differences are strong enough to provide
convincing evidence that the jurors are not a random sample. These ideas can be organized
into hypotheses:

H0: The jurors are a random sample, i.e. there is no racial bias in who serves on a jury,
and the observed counts reflect natural sampling fluctuation.

HA: The jurors are not randomly sampled, i.e. there is racial bias in juror selection.

To evaluate these hypotheses, we quantify how different the observed counts are from the
expected counts. Strong evidence for the alternative hypothesis would come in the form of
unusually large deviations in the groups from what would be expected based on sampling
variation alone.

3.3.2 The chi-square test statistic

In previous hypothesis tests, we constructed a test statistic of the following form:

point estimate− null value

SE of point estimate

This construction was based on (1) identifying the difference between a point estimate
and an expected value if the null hypothesis was true, and (2) standardizing that difference
using the standard error of the point estimate. These two ideas will help in the construction
of an appropriate test statistic for count data.

Our strategy will be to first compute the difference between the observed counts and
the counts we would expect if the null hypothesis was true, then we will standardize the
difference:

Z1 =
observed white count− null white count

SE of observed white count

The standard error for the point estimate of the count in binned data is the square root of
the count under the null.13 Therefore:

Z1 =
205− 198√

198
= 0.50

13Using some of the rules learned in earlier chapters, we might think that the standard error would be
np(1 − p), where n is the sample size and p is the proportion in the population. This would be correct if
we were looking only at one count. However, we are computing many standardized differences and adding
them together. It can be shown – though not here – that the square root of the count is a better way to
standardize the count differences.
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The fraction is very similar to previous test statistics: first compute a difference, then
standardize it. These computations should also be completed for the black, Hispanic, and
other groups:

Black Hispanic Other

Z2 =
26− 19.25√

19.25
= 1.54 Z3 =

25− 33√
33

= −1.39 Z4 =
19− 24.75√

24.75
= −1.16

We would like to use a single test statistic to determine if these four standardized differences
are irregularly far from zero. That is, Z1, Z2, Z3, and Z4 must be combined somehow to
help determine if they – as a group – tend to be unusually far from zero. A first thought
might be to take the absolute value of these four standardized differences and add them up:

|Z1|+ |Z2|+ |Z3|+ |Z4| = 4.58

Indeed, this does give one number summarizing how far the actual counts are from what
was expected. However, it is more common to add the squared values:

Z2
1 + Z2

2 + Z2
3 + Z2

4 = 5.89

Squaring each standardized difference before adding them together does two things:

• Any standardized difference that is squared will now be positive.

• Differences that already look unusual – e.g. a standardized difference of 2.5 – will
become much larger after being squared.

The test statistic X2, which is the sum of the Z2 values, is generally used for these reasons.

X2

chi-square
test statistic

We can also write an equation for X2 using the observed counts and null counts:

X2 =
(observed count1 − null count1)2

null count1
+ · · ·+ (observed count4 − null count4)2

null count4

The final number X2 summarizes how strongly the observed counts tend to deviate from
the null counts. In Section 3.3.4, we will see that if the null hypothesis is true, then X2

follows a new distribution called a chi-square distribution. Using this distribution, we will
be able to obtain a p-value to evaluate the hypotheses.

3.3.3 The chi-square distribution and finding areas

The chi-square distribution is sometimes used to characterize data sets and statistics
that are always positive and typically right skewed. Recall the normal distribution had
two parameters – mean and standard deviation – that could be used to describe its exact
characteristics. The chi-square distribution has just one parameter called degrees of
freedom (df), which influences the shape, center, and spread of the distribution.
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⊙
Guided Practice 3.20 Figure 3.7 shows three chi-square distributions. (a) How
does the center of the distribution change when the degrees of freedom is larger? (b)
What about the variability (spread)? (c) How does the shape change?14

0 5 10 15 20 25

Degrees of Freedom

2
4
9

Figure 3.7: Three chi-square distributions with varying degrees of freedom.

Figure 3.7 and Guided Practice 3.20 demonstrate three general properties of chi-square
distributions as the degrees of freedom increases: the distribution becomes more symmetric,
the center moves to the right, and the variability inflates.

Our principal interest in the chi-square distribution is the calculation of p-values,
which (as we have seen before) is related to finding the relevant area in the tail of a
distribution. To do so, a new table is needed: the chi-square table, partially shown in
Table 3.8. A more complete table is presented in Appendix C.3 on page 344. Using this
table, we identify a range for the area, and we examine a particular row for distributions
with different degrees of freedom. One important quality of this table: the chi-square table
only provides upper tail values.

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

Table 3.8: A section of the chi-square table. A complete table is in Ap-
pendix C.3 on page 344.

14(a) The center becomes larger. If we look carefully, we can see that the center of each distribution
is equal to the distribution’s degrees of freedom. (b) The variability increases as the degrees of freedom
increases. (c) The distribution is very strongly skewed for df = 2, and then the distributions become more
symmetric for the larger degrees of freedom df = 4 and df = 9. We would see this trend continue if we
examined distributions with even more larger degrees of freedom.
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 Example 3.21 Figure 3.9(a) shows a chi-square distribution with 3 degrees of free-
dom and an upper shaded tail starting at 6.25. Use Table 3.8 to estimate the shaded
area.

This distribution has three degrees of freedom, so only the row with 3 degrees of
freedom (df) is relevant. This row has been italicized in the table. Next, we see that
the value – 6.25 – falls in the column with upper tail area 0.1. That is, the shaded
upper tail of Figure 3.9(a) has area 0.1.

 Example 3.22 We rarely observe the exact value in the table. For instance, Fig-
ure 3.9(b) shows the upper tail of a chi-square distribution with 2 degrees of freedom.
The bound for this upper tail is at 4.3, which does not fall in Table 3.8. Find the
approximate tail area.

The cutoff 4.3 falls between the second and third columns in the 2 degrees of freedom
row. Because these columns correspond to tail areas of 0.2 and 0.1, we can be certain
that the area shaded in Figure 3.9(b) is between 0.1 and 0.2.

 Example 3.23 Figure 3.9(c) shows an upper tail for a chi-square distribution with
5 degrees of freedom and a cutoff of 5.1. Find the tail area.

Looking in the row with 5 df, 5.1 falls below the smallest cutoff for this row (6.06).
That means we can only say that the area is greater than 0.3.⊙
Guided Practice 3.24 Figure 3.9(d) shows a cutoff of 11.7 on a chi-square distri-
bution with 7 degrees of freedom. Find the area of the upper tail.15

⊙
Guided Practice 3.25 Figure 3.9(e) shows a cutoff of 10 on a chi-square distri-
bution with 4 degrees of freedom. Find the area of the upper tail.16

⊙
Guided Practice 3.26 Figure 3.9(f) shows a cutoff of 9.21 with a chi-square
distribution with 3 df. Find the area of the upper tail.17

3.3.4 Finding a p-value for a chi-square distribution

In Section 3.3.2, we identified a new test statistic (X2) within the context of assessing
whether there was evidence of racial bias in how jurors were sampled. The null hypothesis
represented the claim that jurors were randomly sampled and there was no racial bias. The
alternative hypothesis was that there was racial bias in how the jurors were sampled.

We determined that a large X2 value would suggest strong evidence favoring the
alternative hypothesis: that there was racial bias. However, we could not quantify what the
chance was of observing such a large test statistic (X2 = 5.89) if the null hypothesis actually
was true. This is where the chi-square distribution becomes useful. If the null hypothesis
was true and there was no racial bias, then X2 would follow a chi-square distribution, with
three degrees of freedom in this case. Under certain conditions, the statistic X2 follows a
chi-square distribution with k − 1 degrees of freedom, where k is the number of bins.

15The value 11.7 falls between 9.80 and 12.02 in the 7 df row. Thus, the area is between 0.1 and 0.2.
16The area is between 0.02 and 0.05.
17Between 0.02 and 0.05.
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Figure 3.9: (a) Chi-square distribution with 3 degrees of freedom, area
above 6.25 shaded. (b) 2 degrees of freedom, area above 4.3 shaded. (c) 5
degrees of freedom, area above 5.1 shaded. (d) 7 degrees of freedom, area
above 11.7 shaded. (e) 4 degrees of freedom, area above 10 shaded. (f) 3
degrees of freedom, area above 9.21 shaded.
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 Example 3.27 How many categories were there in the juror example? How many
degrees of freedom should be associated with the chi-square distribution used for X2?

In the jurors example, there were k = 4 categories: white, black, Hispanic, and other.
According to the rule above, the test statistic X2 should then follow a chi-square
distribution with k − 1 = 3 degrees of freedom if H0 is true.

Just like we checked sample size conditions to use the normal model in earlier sections,
we must also check a sample size condition to safely apply the chi-square distribution for
X2. Each expected count must be at least 5. In the juror example, the expected counts
were 198, 19.25, 33, and 24.75, all easily above 5, so we can apply the chi-square model to
the test statistic, X2 = 5.89.

 Example 3.28 If the null hypothesis is true, the test statistic X2 = 5.89 would be
closely associated with a chi-square distribution with three degrees of freedom. Using
this distribution and test statistic, identify the p-value.

The chi-square distribution and p-value are shown in Figure 3.10. Because larger chi-
square values correspond to stronger evidence against the null hypothesis, we shade
the upper tail to represent the p-value. Using the chi-square table in Appendix C.3
or the short table on page 137, we can determine that the area is between 0.1 and
0.2. That is, the p-value is larger than 0.1 but smaller than 0.2. Generally we do not
reject the null hypothesis with such a large p-value. In other words, the data do not
provide convincing evidence of racial bias in the juror selection.

0 5 10 15

Figure 3.10: The p-value for the juror hypothesis test is shaded in the
chi-square distribution with df = 3.
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Chi-square test for one-way table
Suppose we are to evaluate whether there is convincing evidence that a set of
observed counts O1, O2, ..., Ok in k categories are unusually different from what
might be expected under a null hypothesis. Call the expected counts that are
based on the null hypothesis E1, E2, ..., Ek. If each expected count is at least 5
and the null hypothesis is true, then the test statistic below follows a chi-square
distribution with k − 1 degrees of freedom:

X2 =
(O1 − E1)2

E1
+

(O2 − E2)2

E2
+ · · ·+ (Ok − Ek)2

Ek

The p-value for this test statistic is found by looking at the upper tail of this chi-
square distribution. We consider the upper tail because larger values of X2 would
provide greater evidence against the null hypothesis.

TIP: Conditions for the chi-square test
There are three conditions that must be checked before performing a chi-square
test:

Independence. Each case that contributes a count to the table must be indepen-
dent of all the other cases in the table.

Sample size / distribution. Each particular scenario (i.e. cell count) must have
at least 5 expected cases.

Degrees of freedom We only apply the chi-square technique when the table is
associated with a chi-square distribution with 2 or more degrees of freedom.

Failing to check conditions may affect the test’s error rates.

When examining a table with just two bins, pick a single bin and use the one-
proportion methods introduced in Section 3.1.

3.3.5 Evaluating goodness of fit for a distribution

We can apply our new chi-square testing framework to the second problem in this section:
evaluating whether a certain statistical model fits a data set. Daily stock returns from the
S&P500 for 1990-2011 can be used to assess whether stock activity each day is independent
of the stock’s behavior on previous days. This sounds like a very complex question, and it
is, but a chi-square test can be used to study the problem. We will label each day as Up or
Down (D) depending on whether the market was up or down that day. For example, consider
the following changes in price, their new labels of up and down, and then the number of
days that must be observed before each Up day:

Change in price 2.52 -1.46 0.51 -4.07 3.36 1.10 -5.46 -1.03 -2.99 1.71
Outcome Up D Up D Up Up D D D Up
Days to Up 1 - 2 - 2 1 - - - 4

If the days really are independent, then the number of days until a positive trading day
should follow a geometric distribution. The geometric distribution describes the probability
of waiting for the kth trial to observe the first success. Here each up day (Up) represents
a success, and down (D) days represent failures. In the data above, it took only one day
until the market was up, so the first wait time was 1 day. It took two more days before
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we observed our next Up trading day, and two more for the third Up day. We would like
to determine if these counts (1, 2, 2, 1, 4, and so on) follow the geometric distribution.
Table 3.11 shows the number of waiting days for a positive trading day during 1990-2011
for the S&P500.

Days 1 2 3 4 5 6 7+ Total
Observed 1532 760 338 194 74 33 17 2948

Table 3.11: Observed distribution of the waiting time until a positive trad-
ing day for the S&P500, 1990-2011.

We consider how many days one must wait until observing an Up day on the S&P500
stock exchange. If the stock activity was independent from one day to the next and the
probability of a positive trading day was constant, then we would expect this waiting time
to follow a geometric distribution. We can organize this into a hypothesis framework:

H0: The stock market being up or down on a given day is independent from all other
days. We will consider the number of days that pass until an Up day is observed.
Under this hypothesis, the number of days until an Up day should follow a geometric
distribution.

HA: The stock market being up or down on a given day is not independent from all other
days. Since we know the number of days until an Up day would follow a geometric
distribution under the null, we look for deviations from the geometric distribution,
which would support the alternative hypothesis.

There are important implications in our result for stock traders: if information from past
trading days is useful in telling what will happen today, that information may provide an
advantage over other traders.

We consider data for the S&P500 from 1990 to 2011 and summarize the waiting times
in Table 3.12 and Figure 3.13. The S&P500 was positive on 53.2% of those days.

Because applying the chi-square framework requires expected counts to be at least 5,
we have binned together all the cases where the waiting time was at least 7 days to ensure
each expected count is well above this minimum. The actual data, shown in the Observed
row in Table 3.12, can be compared to the expected counts from the Geometric Model
row. The method for computing expected counts is discussed in Table 3.12. In general, the
expected counts are determined by (1) identifying the null proportion associated with each
bin, then (2) multiplying each null proportion by the total count to obtain the expected

Days 1 2 3 4 5 6 7+ Total
Observed 1532 760 338 194 74 33 17 2948
Geometric Model 1569 734 343 161 75 35 31 2948

Table 3.12: Distribution of the waiting time until a positive trading day.
The expected counts based on the geometric model are shown in the last
row. To find each expected count, we identify the probability of waiting D
days based on the geometric model (P (D) = (1 − 0.532)D−1(0.532)) and
multiply by the total number of streaks, 2948. For example, waiting for
three days occurs under the geometric model about 0.4682×0.532 = 11.65%
of the time, which corresponds to 0.1165× 2948 = 343 streaks.
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Figure 3.13: Side-by-side bar plot of the observed and expected counts for
each waiting time.

counts. That is, this strategy identifies what proportion of the total count we would expect
to be in each bin.

 Example 3.29 Do you notice any unusually large deviations in the graph? Can
you tell if these deviations are due to chance just by looking?

It is not obvious whether differences in the observed counts and the expected counts
from the geometric distribution are significantly different. That is, it is not clear
whether these deviations might be due to chance or whether they are so strong that
the data provide convincing evidence against the null hypothesis. However, we can
perform a chi-square test using the counts in Table 3.12.⊙
Guided Practice 3.30 Table 3.12 provides a set of count data for waiting times
(O1 = 1532, O2 = 760, ...) and expected counts under the geometric distribution
(E1 = 1569, E2 = 734, ...). Compute the chi-square test statistic, X2.18

⊙
Guided Practice 3.31 Because the expected counts are all at least 5, we can safely
apply the chi-square distribution to X2. However, how many degrees of freedom
should we use?19

 Example 3.32 If the observed counts follow the geometric model, then the chi-
square test statistic X2 = 15.08 would closely follow a chi-square distribution with
df = 6. Using this information, compute a p-value.

Figure 3.14 shows the chi-square distribution, cutoff, and the shaded p-value. If we
look up the statistic X2 = 15.08 in Appendix C.3, we find that the p-value is between
0.01 and 0.02. In other words, we have sufficient evidence to reject the notion that
the wait times follow a geometric distribution, i.e. trading days are not independent
and past days may help predict what the stock market will do today.

18X2 =
(1532−1569)2

1569
+

(760−734)2

734
+ · · ·+ (17−31)2

31
= 15.08

19There are k = 7 groups, so we use df = k − 1 = 6.
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Figure 3.14: Chi-square distribution with 6 degrees of freedom. The p-value
for the stock analysis is shaded.

 Example 3.33 In Example 3.32, we rejected the null hypothesis that the trading
days are independent. Why is this so important?

Because the data provided strong evidence that the geometric distribution is not
appropriate, we reject the claim that trading days are independent. While it is not
obvious how to exploit this information, it suggests there are some hidden patterns
in the data that could be interesting and possibly useful to a stock trader.

3.4 Testing for independence in two-way tables
(special topic)

Google is constantly running experiments to test new search algorithms. For example,
Google might test three algorithms using a sample of 10,000 google.com search queries.
Table 3.15 shows an example of 10,000 queries split into three algorithm groups.20 The
group sizes were specified before the start of the experiment to be 5000 for the current
algorithm and 2500 for each test algorithm.

Search algorithm current test 1 test 2 Total
Counts 5000 2500 2500 10000

Table 3.15: Google experiment breakdown of test subjects into three search
groups.

 Example 3.34 What is the ultimate goal of the Google experiment? What are the
null and alternative hypotheses, in regular words?

The ultimate goal is to see whether there is a difference in the performance of the
algorithms. The hypotheses can be described as the following:

H0: The algorithms each perform equally well.

HA: The algorithms do not perform equally well.

20Google regularly runs experiments in this manner to help improve their search engine. It is entirely
possible that if you perform a search and so does your friend, that you will have different search results.
While the data presented in this section resemble what might be encountered in a real experiment, these
data are simulated.
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In this experiment, the explanatory variable is the search algorithm. However, an
outcome variable is also needed. This outcome variable should somehow reflect whether
the search results align with the user’s interests. One possible way to quantify this is to
determine whether (1) the user clicked one of the links provided and did not try a new
search, or (2) the user performed a related search. Under scenario (1), we might think
that the user was satisfied with the search results. Under scenario (2), the search results
probably were not relevant, so the user tried a second search.

Table 3.16 provides the results from the experiment. These data are very similar to
the count data in Section 3.3. However, now the different combinations of two variables
are binned in a two-way table. In examining these data, we want to evaluate whether there
is strong evidence that at least one algorithm is performing better than the others. To do
so, we apply a chi-square test to this two-way table. The ideas of this test are similar to
those ideas in the one-way table case. However, degrees of freedom and expected counts
are computed a little differently than before.

Search algorithm current test 1 test 2 Total
No new search 3511 1749 1818 7078
New search 1489 751 682 2922
Total 5000 2500 2500 10000

Table 3.16: Results of the Google search algorithm experiment.

What is so different about one-way tables and two-way tables?
A one-way table describes counts for each outcome in a single variable. A two-way
table describes counts for combinations of outcomes for two variables. When we
consider a two-way table, we often would like to know, are these variables related
in any way? That is, are they dependent (versus independent)?

The hypothesis test for this Google experiment is really about assessing whether there
is statistically significant evidence that the choice of the algorithm affects whether a user
performs a second search. In other words, the goal is to check whether the search variable
is independent of the algorithm variable.

3.4.1 Expected counts in two-way tables

 Example 3.35 From the experiment, we estimate the proportion of users who were
satisfied with their initial search (no new search) as 7078/10000 = 0.7078. If there
really is no difference among the algorithms and 70.78% of people are satisfied with
the search results, how many of the 5000 people in the “current algorithm” group
would be expected to not perform a new search?

About 70.78% of the 5000 would be satisfied with the initial search:

0.7078× 5000 = 3539 users

That is, if there was no difference between the three groups, then we would expect
3539 of the current algorithm users not to perform a new search.
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⊙
Guided Practice 3.36 Using the same rationale described in Example 3.35, about
how many users in each test group would not perform a new search if the algorithms
were equally helpful?21

We can compute the expected number of users who would perform a new search for
each group using the same strategy employed in Example 3.35 and Guided Practice 3.36.
These expected counts were used to construct Table 3.17, which is the same as Table 3.16,
except now the expected counts have been added in parentheses.

Search algorithm current test 1 test 2 Total
No new search 3511 (3539) 1749 (1769.5) 1818 (1769.5) 7078
New search 1489 (1461) 751 (730.5) 682 (730.5) 2922
Total 5000 2500 2500 10000

Table 3.17: The observed counts and the (expected counts).

The examples and guided practice above provided some help in computing expected
counts. In general, expected counts for a two-way table may be computed using the row
totals, column totals, and the table total. For instance, if there was no difference between
the groups, then about 70.78% of each column should be in the first row:

0.7078× (column 1 total) = 3539

0.7078× (column 2 total) = 1769.5

0.7078× (column 3 total) = 1769.5

Looking back to how the fraction 0.7078 was computed – as the fraction of users who did
not perform a new search (7078/10000) – these three expected counts could have been
computed as (

row 1 total

table total

)
(column 1 total) = 3539(

row 1 total

table total

)
(column 2 total) = 1769.5(

row 1 total

table total

)
(column 3 total) = 1769.5

This leads us to a general formula for computing expected counts in a two-way table when
we would like to test whether there is strong evidence of an association between the column
variable and row variable.

Computing expected counts in a two-way table
To identify the expected count for the ith row and jth column, compute

Expected Countrow i, col j =
(row i total)× (column j total)

table total

21We would expect 0.7078 ∗ 2500 = 1769.5. It is okay that this is a fraction.
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3.4.2 The chi-square test for two-way tables

The chi-square test statistic for a two-way table is found the same way it is found for a
one-way table. For each table count, compute

General formula
(observed count − expected count)2

expected count

Row 1, Col 1
(3511− 3539)2

3539
= 0.222

Row 1, Col 2
(1749− 1769.5)2

1769.5
= 0.237

...
...

Row 2, Col 3
(682− 730.5)2

730.5
= 3.220

Adding the computed value for each cell gives the chi-square test statistic X2:

X2 = 0.222 + 0.237 + · · ·+ 3.220 = 6.120

Just like before, this test statistic follows a chi-square distribution. However, the degrees
of freedom are computed a little differently for a two-way table.22 For two way tables, the
degrees of freedom is equal to

df = (number of rows minus 1)× (number of columns minus 1)

In our example, the degrees of freedom parameter is

df = (2− 1)× (3− 1) = 2

If the null hypothesis is true (i.e. the algorithms are equally useful), then the test statistic
X2 = 6.12 closely follows a chi-square distribution with 2 degrees of freedom. Using this
information, we can compute the p-value for the test, which is depicted in Figure 3.18.

Computing degrees of freedom for a two-way table
When applying the chi-square test to a two-way table, we use

df = (R− 1)× (C − 1)

where R is the number of rows in the table and C is the number of columns.

TIP: Use two-proportion methods for 2-by-2 contingency tables
When analyzing 2-by-2 contingency tables, use the two-proportion methods intro-
duced in Section 3.2.

22Recall: in the one-way table, the degrees of freedom was the number of cells minus 1.
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Figure 3.18: Computing the p-value for the Google hypothesis test.

Congress
Obama Democrats Republicans Total

Approve 842 736 541 2119
Disapprove 616 646 842 2104
Total 1458 1382 1383 4223

Table 3.19: Pew Research poll results of a March 2012 poll.

 Example 3.37 Compute the p-value and draw a conclusion about whether the
search algorithms have different performances.

Looking in Appendix C.3 on page 344, we examine the row corresponding to 2 degrees
of freedom. The test statistic, X2 = 6.120, falls between the fourth and fifth columns,
which means the p-value is between 0.02 and 0.05. Because we typically test at a
significance level of α = 0.05 and the p-value is less than 0.05, the null hypothesis is
rejected. That is, the data provide convincing evidence that there is some difference
in performance among the algorithms.

 Example 3.38 Table 3.19 summarizes the results of a Pew Research poll.23 We
would like to determine if there are actually differences in the approval ratings of
Barack Obama, Democrats in Congress, and Republicans in Congress. What are
appropriate hypotheses for such a test?

H0: There is no difference in approval ratings between the three groups.

HA: There is some difference in approval ratings between the three groups, e.g. per-
haps Obama’s approval differs from Democrats in Congress.

23See the Pew Research website: www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-

matchup-with-obama. The counts in Table 3.19 are approximate.

http://www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-matchup-with-obama/
http://www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-matchup-with-obama/
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⊙
Guided Practice 3.39 A chi-square test for a two-way table may be used to test
the hypotheses in Example 3.38. As a first step, compute the expected values for
each of the six table cells.24

⊙
Guided Practice 3.40 Compute the chi-square test statistic.25

⊙
Guided Practice 3.41 Because there are 2 rows and 3 columns, the degrees of
freedom for the test is df = (2 − 1) × (3 − 1) = 2. Use X2 = 106.4, df = 2, and the
chi-square table on page 344 to evaluate whether to reject the null hypothesis.26

24The expected count for row one / column one is found by multiplying the row one total (2119) and
column one total (1458), then dividing by the table total (4223): 2119×1458

3902
= 731.6. Similarly for the first

column and the second row: 2104×1458
4223

= 726.4. Column 2: 693.5 and 688.5. Column 3: 694.0 and 689.0

25For each cell, compute
(obs−exp)2

exp
. For instance, the first row and first column:

(842−731.6)2

731.6
= 16.7.

Adding the results of each cell gives the chi-square test statistic: X2 = 16.7 + · · ·+ 34.0 = 106.4.
26The test statistic is larger than the right-most column of the df = 2 row of the chi-square table,

meaning the p-value is less than 0.001. That is, we reject the null hypothesis because the p-value is
less than 0.05, and we conclude that Americans’ approval has differences among Democrats in Congress,
Republicans in Congress, and the president.
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3.5 Exercises

3.5.1 Inference for a single proportion

3.1 Vegetarian college students. Suppose that 8% of college students are vegetarians. De-
termine if the following statements are true or false, and explain your reasoning.

(a) The distribution of the sample proportions of vegetarians in random samples of size 60 is
approximately normal since n ≥ 30.

(b) The distribution of the sample proportions of vegetarian college students in random samples
of size 50 is right skewed.

(c) A random sample of 125 college students where 12% are vegetarians would be considered
unusual.

(d) A random sample of 250 college students where 12% are vegetarians would be considered
unusual.

(e) The standard error would be reduced by one-half if we increased the sample size from 125
to 250.

3.2 Young Americans, Part I. About 77% of young adults think they can achieve the American
dream. Determine if the following statements are true or false, and explain your reasoning.27

(a) The distribution of sample proportions of young Americans who think they can achieve the
American dream in samples of size 20 is left skewed.

(b) The distribution of sample proportions of young Americans who think they can achieve the
American dream in random samples of size 40 is approximately normal since n ≥ 30.

(c) A random sample of 60 young Americans where 85% think they can achieve the American
dream would be considered unusual.

(d) A random sample of 120 young Americans where 85% think they can achieve the American
dream would be considered unusual.

3.3 Orange tabbies. Suppose that 90% of orange tabby cats are male. Determine if the
following statements are true or false, and explain your reasoning.

(a) The distribution of sample proportions of random samples of size 30 is left skewed.

(b) Using a sample size that is 4 times as large will reduce the standard error of the sample
proportion by one-half.

(c) The distribution of sample proportions of random samples of size 140 is approximately normal.

(d) The distribution of sample proportions of random samples of size 280 is approximately normal.

3.4 Young Americans, Part II. About 25% of young Americans have delayed starting a family
due to the continued economic slump. Determine if the following statements are true or false, and
explain your reasoning.28

(a) The distribution of sample proportions of young Americans who have delayed starting a family
due to the continued economic slump in random samples of size 12 is right skewed.

(b) In order for the the distribution of sample proportions of young Americans who have delayed
starting a family due to the continued economic slump to be approximately normal, we need
random samples where the sample size is at least 40.

(c) A random sample of 50 young Americans where 20% have delayed starting a family due to
the continued economic slump would be considered unusual.

(d) A random sample of 150 young Americans where 20% have delayed starting a family due to
the continued economic slump would be considered unusual.

(e) Tripling the sample size will reduce the standard error of the sample proportion by one-third.

27A. Vaughn. “Poll finds young adults optimistic, but not about money”. In: Los Angeles Times (2011).
28Demos.org. “The State of Young America: The Poll”. In: (2011).

http://articles.latimes.com/2011/nov/03/nation/la-na-young-adults-20111103
http://www.demos.org/publication/state-young-america-poll
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3.5 Prop 19 in California. In a 2010 Survey USA poll, 70% of the 119 respondents between
the ages of 18 and 34 said they would vote in the 2010 general election for Prop 19, which would
change California law to legalize marijuana and allow it to be regulated and taxed. At a 95%
confidence level, this sample has an 8% margin of error. Based on this information, determine if
the following statements are true or false, and explain your reasoning.29

(a) We are 95% confident that between 62% and 78% of the California voters in this sample
support Prop 19.

(b) We are 95% confident that between 62% and 78% of all California voters between the ages of
18 and 34 support Prop 19.

(c) If we considered many random samples of 119 California voters between the ages of 18 and
34, and we calculated 95% confidence intervals for each, 95% of them will include the true
population proportion of Californians who support Prop 19.

(d) In order to decrease the margin of error to 4%, we would need to quadruple (multiply by 4)
the sample size.

(e) Based on this confidence interval, there is sufficient evidence to conclude that a majority of
California voters between the ages of 18 and 34 support Prop 19.

3.6 2010 Healthcare Law. On June 28, 2012 the U.S. Supreme Court upheld the much debated
2010 healthcare law, declaring it constitutional. A Gallup poll released the day after this decision
indicates that 46% of 1,012 Americans agree with this decision. At a 95% confidence level, this
sample has a 3% margin of error. Based on this information, determine if the following statements
are true or false, and explain your reasoning.30

(a) We are 95% confident that between 43% and 49% of Americans in this sample support the
decision of the U.S. Supreme Court on the 2010 healthcare law.

(b) We are 95% confident that between 43% and 49% of Americans support the decision of the
U.S. Supreme Court on the 2010 healthcare law.

(c) If we considered many random samples of 1,012 Americans, and we calculated the sample
proportions of those who support the decision of the U.S. Supreme Court, 95% of those sample
proportions will be between 43% and 49%.

(d) The margin of error at a 90% confidence level would be higher than 3%.

3.7 Fireworks on July 4th. In late June 2012, Survey USA published results of a survey stating
that 56% of the 600 randomly sampled Kansas residents planned to set off fireworks on July 4th.
Determine the margin of error for the 56% point estimate using a 95% confidence level.31

3.8 Elderly drivers. In January 2011, The Marist Poll published a report stating that 66% of
adults nationally think licensed drivers should be required to retake their road test once they reach
65 years of age. It was also reported that interviews were conducted on 1,018 American adults,
and that the margin of error was 3% using a 95% confidence level.32

(a) Verify the margin of error reported by The Marist Poll.

(b) Based on a 95% confidence interval, does the poll provide convincing evidence that more than
70% of the population think that licensed drivers should be required to retake their road test
once they turn 65?

29Survey USA, Election Poll #16804, data collected July 8-11, 2010.
30Gallup, Americans Issue Split Decision on Healthcare Ruling, data collected June 28, 2012.
31Survey USA, News Poll #19333, data collected on June 27, 2012.
32Marist Poll, Road Rules: Re-Testing Drivers at Age 65?, March 4, 2011.

http://www.surveyusa.com/client/PollReport.aspx?g=d525bd62-80d2-4884-86a1-8c48ad920150
http://www.gallup.com/poll/155447/Americans-Issue-Split-Decision-Healthcare-Ruling.aspx
http://www.surveyusa.com/client/PollReport.aspx?g=9f76df27-701b-4223-bf0f-3a6027b80321
http://maristpoll.marist.edu/34-road-rules-re-testing-drivers-at-age-65
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3.9 Life after college. We are interested in estimating the proportion of graduates at a mid-sized
university who found a job within one year of completing their undergraduate degree. Suppose we
conduct a survey and find out that 348 of the 400 randomly sampled graduates found jobs. The
graduating class under consideration included over 4500 students.

(a) Describe the population parameter of interest. What is the value of the point estimate of this
parameter?

(b) Check if the conditions for constructing a confidence interval based on these data are met.

(c) Calculate a 95% confidence interval for the proportion of graduates who found a job within
one year of completing their undergraduate degree at this university, and interpret it in the
context of the data.

(d) What does “95% confidence” mean?

(e) Now calculate a 99% confidence interval for the same parameter and interpret it in the context
of the data.

(f) Compare the widths of the 95% and 99% confidence intervals. Which one is wider? Explain.

3.10 Life rating in Greece. Greece has faced a severe economic crisis since the end of 2009.
A Gallup poll surveyed 1,000 randomly sampled Greeks in 2011 and found that 25% of them said
they would rate their lives poorly enough to be considered “suffering”.33

(a) Describe the population parameter of interest. What is the value of the point estimate of this
parameter?

(b) Check if the conditions required for constructing a confidence interval based on these data are
met.

(c) Construct a 95% confidence interval for the proportion of Greeks who are “suffering”.

(d) Without doing any calculations, describe what would happen to the confidence interval if we
decided to use a higher confidence level.

(e) Without doing any calculations, describe what would happen to the confidence interval if we
used a larger sample.

3.11 Study abroad. A survey on 1,509 high school seniors who took the SAT and who completed
an optional web survey between April 25 and April 30, 2007 shows that 55% of high school seniors
are fairly certain that they will participate in a study abroad program in college.34

(a) Is this sample a representative sample from the population of all high school seniors in the
US? Explain your reasoning.

(b) Let’s suppose the conditions for inference are met. Even if your answer to part (a) indicated
that this approach would not be reliable, this analysis may still be interesting to carry out
(though not report). Construct a 90% confidence interval for the proportion of high school
seniors (of those who took the SAT) who are fairly certain they will participate in a study
abroad program in college, and interpret this interval in context.

(c) What does “90% confidence” mean?

(d) Based on this interval, would it be appropriate to claim that the majority of high school seniors
are fairly certain that they will participate in a study abroad program in college?

33Gallup World, More Than One in 10 “Suffering” Worldwide, data collected throughout 2011.
34studentPOLL, College-Bound Students’ Interests in Study Abroad and Other International Learning

Activities, January 2008.

http://www.gallup.com/poll/153869/One-Suffering-Worldwide.aspx
http://www.gallup.com/poll/153869/One-Suffering-Worldwide.aspx
http://www.gallup.com/poll/153869/One-Suffering-Worldwide.aspx
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3.12 Legalization of marijuana, Part I. The 2010 General Social Survey asked 1,259 US res-
idents: “Do you think the use of marijuana should be made legal, or not?” 48% of the respondents
said it should be made legal.35

(a) Is 48% a sample statistic or a population parameter? Explain.

(b) Construct a 95% confidence interval for the proportion of US residents who think marijuana
should be made legal, and interpret it in the context of the data.

(c) A critic points out that this 95% confidence interval is only accurate if the statistic follows a
normal distribution, or if the normal model is a good approximation. Is this true for these
data? Explain.

(d) A news piece on this survey’s findings states, “Majority of Americans think marijuana should
be legalized.” Based on your confidence interval, is this news piece’s statement justified?

3.13 Public option, Part I. A Washington Post article from 2009 reported that “support
for a government-run health-care plan to compete with private insurers has rebounded from its
summertime lows and wins clear majority support from the public.” More specifically, the article
says “seven in 10 Democrats back the plan, while almost nine in 10 Republicans oppose it. In-
dependents divide 52 percent against, 42 percent in favor of the legislation.” (6% responded with
“other”.) There were were 819 Democrats, 566 Republicans and 783 Independents surveyed.36

(a) A political pundit on TV claims that a majority of Independents oppose the health care public
option plan. Do these data provide strong evidence to support this statement?

(b) Would you expect a confidence interval for the proportion of Independents who oppose the
public option plan to include 0.5? Explain.

3.14 The Civil War. A national survey conducted in 2011 among a simple random sample of
1,507 adults shows that 56% of Americans think the Civil War is still relevant to American politics
and political life.37

(a) Conduct a hypothesis test to determine if these data provide strong evidence that the majority
of the Americans think the Civil War is still relevant.

(b) Interpret the p-value in this context.

(c) Calculate a 90% confidence interval for the proportion of Americans who think the Civil War
is still relevant. Interpret the interval in this context, and comment on whether or not the
confidence interval agrees with the conclusion of the hypothesis test.

3.15 Browsing on the mobile device. A 2012 survey of 2,254 American adults indicates
that 17% of cell phone owners do their browsing on their phone rather than a computer or other
device.38

(a) According to an online article, a report from a mobile research company indicates that 38 per-
cent of Chinese mobile web users only access the internet through their cell phones.39 Conduct
a hypothesis test to determine if these data provide strong evidence that the proportion of
Americans who only use their cell phones to access the internet is different than the Chinese
proportion of 38%.

(b) Interpret the p-value in this context.

(c) Calculate a 95% confidence interval for the proportion of Americans who access the internet
on their cell phones, and interpret the interval in this context.

35National Opinion Research Center, General Social Survey, 2010.
36D. Balz and J. Cohen. “Most support public option for health insurance, poll finds”. In: The

Washington Post (2009).
37Pew Research Center Publications, Civil War at 150: Still Relevant, Still Divisive, data collected

between March 30 - April 3, 2011.
38Pew Internet, Cell Internet Use 2012, data collected between March 15 - April 13, 2012.
39S. Chang. “The Chinese Love to Use Feature Phone to Access the Internet”. In: M.I.C Gadget (2012).

http://www3.norc.org/gss+website
http://www.washingtonpost.com/wp-dyn/content/article/2009/10/19/AR2009101902451.html
http://pewresearch.org/pubs/1958/civil-war-still-relevant-and-divisive-praise-confederate-leaders-flag
http://www.pewinternet.org/Reports/2012/Cell-Internet-Use-2012.aspx
http://micgadget.com/24163/the-chinese-love-to-use-feature-phone-to-access-the-internet/
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3.16 Is college worth it? Part I. Among a simple random sample of 331 American adults
who do not have a four-year college degree and are not currently enrolled in school, 48% said they
decided not to go to college because they could not afford school.40

(a) A newspaper article states that only a minority of the Americans who decide not to go to
college do so because they cannot afford it and uses the point estimate from this survey
as evidence. Conduct a hypothesis test to determine if these data provide strong evidence
supporting this statement.

(b) Would you expect a confidence interval for the proportion of American adults who decide not
to go to college because they cannot afford it to include 0.5? Explain.

3.17 Taste test. Some people claim that they can tell the difference between a diet soda and
a regular soda in the first sip. A researcher wanting to test this claim randomly sampled 80 such
people. He then filled 80 plain white cups with soda, half diet and half regular through random
assignment, and asked each person to take one sip from their cup and identify the soda as diet or
regular. 53 participants correctly identified the soda.

(a) Do these data provide strong evidence that these people are able to detect the difference
between diet and regular soda, in other words, are the results significantly better than just
random guessing?

(b) Interpret the p-value in this context.

3.18 Is college worth it? Part II. Exercise 3.16 presents the results of a poll where 48% of
331 Americans who decide to not go to college do so because they cannot afford it.

(a) Calculate a 90% confidence interval for the proportion of Americans who decide to not go to
college because they cannot afford it, and interpret the interval in context.

(b) Suppose we wanted the margin of error for the 90% confidence level to be about 1.5%. How
large of a survey would you recommend?

3.19 College smokers. We are interested in estimating the proportion of students at a university
who smoke. Out of a random sample of 200 students from this university, 40 students smoke.

(a) Calculate a 95% confidence interval for the proportion of students at this university who smoke,
and interpret this interval in context. (Reminder: check conditions)

(b) If we wanted the margin of error to be no larger than 2% at a 95% confidence level for the
proportion of students who smoke, how big of a sample would we need?

3.20 Legalize Marijuana, Part II. As discussed in Exercise 3.12, the 2010 General Social
Survey reported a sample where about 48% of US residents thought marijuana should be made
legal. If we wanted to limit the margin of error of a 95% confidence interval to 2%, about how
many Americans would we need to survey ?

3.21 Public option, Part II. Exercise 3.13 presents the results of a poll evaluating support for
the health care public option in 2009, reporting that 52% of Independents in the sample opposed
the public option. If we wanted to estimate this number to within 1% with 90% confidence, what
would be an appropriate sample size?

40Pew Research Center Publications, Is College Worth It?, data collected between March 15-29, 2011.

http://pewresearch.org/pubs/1993/survey-is-college-degree-worth-cost-debt-college-presidents-higher-education-system


3.5. EXERCISES 155

3.22 Acetaminophen and liver damage. It is believed that large doses of acetaminophen
(the active ingredient in over the counter pain relievers like Tylenol) may cause damage to the
liver. A researcher wants to conduct a study to estimate the proportion of acetaminophen users
who have liver damage. For participating in this study, he will pay each subject $20 and provide
a free medical consultation if the patient has liver damage.

(a) If he wants to limit the margin of error of his 98% confidence interval to 2%, what is the
minimum amount of money he needs to set aside to pay his subjects?

(b) The amount you calculated in part (a) is substantially over his budget so he decides to use
fewer subjects. How will this affect the width of his confidence interval?

3.5.2 Difference of two proportions

3.23 Social experiment. A “social experiment” conducted by a TV program questioned what
people do when they see a very obviously bruised woman getting picked on by her boyfriend. On
two different occasions at the same restaurant, the same couple was depicted. In one scenario the
woman was dressed “provocatively” and in the other scenario the woman was dressed “conserva-
tively”. The table below shows how many restaurant diners were present under each scenario, and
whether or not they intervened.

Scenario
Provocative Conservative Total

Intervene
Yes 5 15 20
No 15 10 25
Total 20 25 45

Explain why the sampling distribution of the difference between the proportions of interventions
under provocative and conservative scenarios does not follow an approximately normal distribu-
tion.

3.24 Heart transplant success. The Stanford University Heart Transplant Study was con-
ducted to determine whether an experimental heart transplant program increased lifespan. Each
patient entering the program was officially designated a heart transplant candidate, meaning that
he was gravely ill and might benefit from a new heart. Patients were randomly assigned into
treatment and control groups. Patients in the treatment group received a transplant, and those in
the control group did not. The table below displays how many patients survived and died in each
group.41

control treatment

alive 4 24
dead 30 45

A hypothesis test would reject the conclusion that the survival rate is the same in each group,
and so we might like to calculate a confidence interval. Explain why we cannot construct such an
interval using the normal approximation. What might go wrong if we constructed the confidence
interval despite this problem?

41B. Turnbull et al. “Survivorship of Heart Transplant Data”. In: Journal of the American Statistical
Association 69 (1974), pp. 74–80.

http://www.jstor.org/discover/10.2307/2285502?uid=3739256&uid=2129&uid=2&uid=70&uid=4&sid=47699108222567
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3.25 Gender and color preference. A 2001 study asked 1,924 male and 3,666 female under-
graduate college students their favorite color. A 95% confidence interval for the difference between
the proportions of males and females whose favorite color is black (pmale−pfemale) was calculated
to be (0.02, 0.06). Based on this information, determine if the following statements are true or
false, and explain your reasoning for each statement you identify as false.42

(a) We are 95% confident that the true proportion of males whose favorite color is black is 2%
lower to 6% higher than the true proportion of females whose favorite color is black.

(b) We are 95% confident that the true proportion of males whose favorite color is black is 2% to
6% higher than the true proportion of females whose favorite color is black.

(c) 95% of random samples will produce 95% confidence intervals that include the true difference
between the population proportions of males and females whose favorite color is black.

(d) We can conclude that there is a significant difference between the proportions of males and fe-
males whose favorite color is black and that the difference between the two sample proportions
is too large to plausibly be due to chance.

(e) The 95% confidence interval for (pfemale− pmale) cannot be calculated with only the informa-
tion given in this exercise.

3.26 The Daily Show. A 2010 Pew Research foundation poll indicates that among 1,099
college graduates, 33% watch The Daily Show. Meanwhile, 22% of the 1,110 people with a high
school degree but no college degree in the poll watch The Daily Show. A 95% confidence interval
for (pcollege grad − pHS or less), where p is the proportion of those who watch The Daily Show, is
(0.07, 0.15). Based on this information, determine if the following statements are true or false,
and explain your reasoning if you identify the statement as false.43

(a) At the 5% significance level, the data provide convincing evidence of a difference between the
proportions of college graduates and those with a high school degree or less who watch The
Daily Show.

(b) We are 95% confident that 7% less to 15% more college graduates watch The Daily Show than
those with a high school degree or less.

(c) 95% of random samples of 1,099 college graduates and 1,110 people with a high school degree
or less will yield differences in sample proportions between 7% and 15%.

(d) A 90% confidence interval for (pcollege grad − pHS or less) would be wider.

(e) A 95% confidence interval for (pHS or less − pcollege grad) is (-0.15,-0.07).

3.27 Public Option, Part III. Exercise 3.13 presents the results of a poll evaluating support
for the health care public option plan in 2009. 70% of 819 Democrats and 42% of 783 Independents
support the public option.

(a) Calculate a 95% confidence interval for the difference between (pD − pI) and interpret it in
this context. We have already checked conditions for you.

(b) True or false: If we had picked a random Democrat and a random Independent at the time
of this poll, it is more likely that the Democrat would support the public option than the
Independent.

42L Ellis and C Ficek. “Color preferences according to gender and sexual orientation”. In: Personality
and Individual Differences 31.8 (2001), pp. 1375–1379.

43The Pew Research Center, Americans Spending More Time Following the News, data collected June
8-28, 2010.

http://www.sciencedirect.com/science/article/pii/S0191886900002312
http://www.people-press.org/files/legacy-pdf/652.pdf
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3.28 Sleep deprivation, CA vs. OR, Part I. According to a report on sleep deprivation by the
Centers for Disease Control and Prevention, the proportion of California residents who reported
insufficient rest or sleep during each of the preceding 30 days is 8.0%, while this proportion is
8.8% for Oregon residents. These data are based on simple random samples of 11,545 California
and 4,691 Oregon residents. Calculate a 95% confidence interval for the difference between the
proportions of Californians and Oregonians who are sleep deprived and interpret it in context of
the data.44

3.29 Offshore drilling, Part I. A 2010 survey asked 827 randomly sampled registered voters
in California “Do you support? Or do you oppose? Drilling for oil and natural gas off the Coast of
California? Or do you not know enough to say?” Below is the distribution of responses, separated
based on whether or not the respondent graduated from college.45

(a) What percent of college graduates and what percent of
the non-college graduates in this sample do not know
enough to have an opinion on drilling for oil and natural
gas off the Coast of California?

(b) Conduct a hypothesis test to determine if the data
provide strong evidence that the proportion of college
graduates who do not have an opinion on this issue is
different than that of non-college graduates.

College Grad
Yes No

Support 154 132
Oppose 180 126
Do not know 104 131
Total 438 389

3.30 Sleep deprivation, CA vs. OR, Part II. Exercise 3.28 provides data on sleep depri-
vation rates of Californians and Oregonians. The proportion of California residents who reported
insufficient rest or sleep during each of the preceding 30 days is 8.0%, while this proportion is 8.8%
for Oregon residents. These data are based on simple random samples of 11,545 California and
4,691 Oregon residents.

(a) Conduct a hypothesis test to determine if these data provide strong evidence the rate of sleep
deprivation is different for the two states. (Reminder: check conditions)

(b) It is possible the conclusion of the test in part (a) is incorrect. If this is the case, what type
of error was made?

3.31 Offshore drilling, Part II. Results of a poll evaluating support for drilling for oil and
natural gas off the coast of California were introduced in Exercise 3.29.

College Grad
Yes No

Support 154 132
Oppose 180 126
Do not know 104 131
Total 438 389

(a) What percent of college graduates and what percent of the non-college graduates in this sample
support drilling for oil and natural gas off the Coast of California?

(b) Conduct a hypothesis test to determine if the data provide strong evidence that the proportion
of college graduates who support off-shore drilling in California is different than that of non-
college graduates.

44CDC, Perceived Insufficient Rest or Sleep Among Adults — United States, 2008.
45Survey USA, Election Poll #16804, data collected July 8-11, 2010.

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5842a2.htm
http://www.surveyusa.com/client/PollReport.aspx?g=d525bd62-80d2-4884-86a1-8c48ad920150
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3.32 Full body scan, Part I. A news article reports that “Americans have differing views
on two potentially inconvenient and invasive practices that airports could implement to uncover
potential terrorist attacks.” This news piece was based on a survey conducted among a random
sample of 1,137 adults nationwide, interviewed by telephone November 7-10, 2010, where one of
the questions on the survey was “Some airports are now using ‘full-body’ digital x-ray machines to
electronically screen passengers in airport security lines. Do you think these new x-ray machines
should or should not be used at airports?” Below is a summary of responses based on party
affiliation.46

Party Affiliation
Republican Democrat Independent

Answer
Should 264 299 351
Should not 38 55 77
Don’t know/No answer 16 15 22
Total 318 369 450

(a) Conduct an appropriate hypothesis test evaluating whether there is a difference in the pro-
portion of Republicans and Democrats who think the full-body scans should be applied in
airports. Assume that all relevant conditions are met.

(b) The conclusion of the test in part (a) may be incorrect, meaning a testing error was made. If
an error was made, was it a Type I or a Type II error? Explain.

3.33 Sleep deprived transportation workers. The National Sleep Foundation conducted a
survey on the sleep habits of randomly sampled transportation workers and a control sample of
non-transportation workers. The results of the survey are shown below.47

Transportation Professionals
Truck Train Bux/Taxi/Limo

Control Pilots Drivers Operators Drivers
Less than 6 hours of sleep 35 19 35 29 21
6 to 8 hours of sleep 193 132 117 119 131
More than 8 hours 64 51 51 32 58
Total 292 202 203 180 210

Conduct a hypothesis test to evaluate if these data provide evidence of a difference between the
proportions of truck drivers and non-transportation workers (the control group) who get less than
6 hours of sleep per day, i.e. are considered sleep deprived.

46S. Condon. “Poll: 4 in 5 Support Full-Body Airport Scanners”. In: CBS News (2010).
47National Sleep Foundation, 2012 Sleep in America Poll: Transportation Workers Sleep, 2012.

http://www.cbsnews.com/8301-503544_162-20022876-503544.html
http://www.sleepfoundation.org/2012poll
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3.34 Prenatal vitamins and Autism. Researchers studying the link between prenatal vitamin
use and autism surveyed the mothers of a random sample of children aged 24 - 60 months with
autism and conducted another separate random sample for children with typical development. The
table below shows the number of mothers in each group who did and did not use prenatal vitamins
during the three months before pregnancy (periconceptional period).48

Autism
Autism Typical development Total

Periconceptional No vitamin 111 70 181
prenatal vitamin Vitamin 143 159 302

Total 254 229 483

(a) State appropriate hypotheses to test for independence of use of prenatal vitamins during the
three months before pregnancy and autism.

(b) Complete the hypothesis test and state an appropriate conclusion. (Reminder: verify any
necessary conditions for the test.)

(c) A New York Times article reporting on this study was titled “Prenatal Vitamins May Ward
Off Autism”. Do you find the title of this article to be appropriate? Explain your answer.
Additionally, propose an alternative title.49

3.35 HIV in sub-Saharan Africa. In July 2008 the US National Institutes of Health an-
nounced that it was stopping a clinical study early because of unexpected results. The study
population consisted of HIV-infected women in sub-Saharan Africa who had been given single
dose Nevaripine (a treatment for HIV) while giving birth, to prevent transmission of HIV to the
infant. The study was a randomized comparison of continued treatment of a woman (after suc-
cessful childbirth) with Nevaripine vs. Lopinavir, a second drug used to treat HIV. 240 women
participated in the study; 120 were randomized to each of the two treatments. Twenty-four weeks
after starting the study treatment, each woman was tested to determine if the HIV infection was
becoming worse (an outcome called virologic failure). Twenty-six of the 120 women treated with
Nevaripine experienced virologic failure, while 10 of the 120 women treated with the other drug
experienced virologic failure.50

(a) Create a two-way table presenting the results of this study.

(b) State appropriate hypotheses to test for independence of treatment and virologic failure.

(c) Complete the hypothesis test and state an appropriate conclusion. (Reminder: verify any
necessary conditions for the test.)

3.36 Diabetes and unemployment. A 2012 Gallup poll surveyed Americans about their
employment status and whether or not they have diabetes. The survey results indicate that 1.5%
of the 47,774 employed (full or part time) and 2.5% of the 5,855 unemployed 18-29 year olds have
diabetes.51

(a) Create a two-way table presenting the results of this study.

(b) State appropriate hypotheses to test for independence of incidence of diabetes and employment
status.

(c) The sample difference is about 1%. If we completed the hypothesis test, we would find that
the p-value is very small (about 0), meaning the difference is statistically significant. Use
this result to explain the difference between statistically significant and practically significant
findings.

48R.J. Schmidt et al. “Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism”.
In: Epidemiology 22.4 (2011), p. 476.

49R.C. Rabin. “Patterns: Prenatal Vitamins May Ward Off Autism”. In: New York Times (2011).
50S. Lockman et al. “Response to antiretroviral therapy after a single, peripartum dose of nevirapine”.

In: Obstetrical & gynecological survey 62.6 (2007), p. 361.
51Gallup Wellbeing, Employed Americans in Better Health Than the Unemployed, data collected Jan.

2, 2011 - May 21, 2012.

http://www.ncbi.nlm.nih.gov/pubmed/21610500
http://www.nytimes.com/2011/06/14/health/research/14patterns.html?_r=1&ref=research
http://www.nejm.org/doi/pdf/10.1056/NEJMoa062876
http://www.gallup.com/poll/155408/Employed-Americans-Better-Health-Unemployed.aspx
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3.5.3 Testing for goodness of fit using chi-square

3.37 True or false, Part I. Determine if the statements below are true or false. For each false
statement, suggest an alternative wording to make it a true statement.

(a) The chi-square distribution, just like the normal distribution, has two parameters, mean and
standard deviation.

(b) The chi-square distribution is always right skewed, regardless of the value of the degrees of
freedom parameter.

(c) The chi-square statistic is always positive.

(d) As the degrees of freedom increases, the shape of the chi-square distribution becomes more
skewed.

3.38 True or false, Part II. Determine if the statements below are true or false. For each false
statement, suggest an alternative wording to make it a true statement.

(a) As the degrees of freedom increases, the mean of the chi-square distribution increases.

(b) If you found X2 = 10 with df = 5 you would fail to reject H0 at the 5% significance level.

(c) When finding the p-value of a chi-square test, we always shade the tail areas in both tails.

(d) As the degrees of freedom increases, the variability of the chi-square distribution decreases.

3.39 Open source textbook. A professor using an open source introductory statistics book
predicts that 60% of the students will purchase a hard copy of the book, 25% will print it out from
the web, and 15% will read it online. At the end of the semester he asks his students to complete
a survey where they indicate what format of the book they used. Of the 126 students, 71 said
they bought a hard copy of the book, 30 said they printed it out from the web, and 25 said they
read it online.

(a) State the hypotheses for testing if the professor’s predictions were inaccurate.

(b) How many students did the professor expect to buy the book, print the book, and read the
book exclusively online?

(c) This is an appropriate setting for a chi-square test. List the conditions required for a test and
verify they are satisfied.

(d) Calculate the chi-squared statistic, the degrees of freedom associated with it, and the p-value.

(e) Based on the p-value calculated in part (d), what is the conclusion of the hypothesis test?
Interpret your conclusion in this context.

3.40 Evolution vs. creationism. A Gallup Poll released in December 2010 asked 1019 adults
living in the Continental U.S. about their belief in the origin of humans. These results, along with
results from a more comprehensive poll from 2001 (that we will assume to be exactly accurate),
are summarized in the table below:52

Year
Response 2010 2001

Humans evolved, with God guiding (1) 38% 37%
Humans evolved, but God had no part in process (2) 16% 12%
God created humans in present form (3) 40% 45%
Other / No opinion (4) 6% 6%

(a) Calculate the actual number of respondents in 2010 that fall in each response category.

(b) State hypotheses for the following research question: have beliefs on the origin of human life
changed since 2001?

(c) Calculate the expected number of respondents in each category under the condition that the
null hypothesis from part (b) is true.

(d) Conduct a chi-square test and state your conclusion. (Reminder: verify conditions.)

52Four in 10 Americans Believe in Strict Creationism, December 17, 2010, http://www.gallup.com/
poll/145286/Four-Americans-Believe-Strict-Creationism.aspx.

http://www.gallup.com/poll/145286/Four-Americans-Believe-Strict-Creationism.aspx
http://www.gallup.com/poll/145286/Four-Americans-Believe-Strict-Creationism.aspx
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3.5.4 Testing for independence in two-way tables

3.41 Offshore drilling, Part III. The table below summarizes a data set we first encountered
in Exercise 3.29 that examines the responses of a random sample of college graduates and non-
graduates on the topic of oil drilling. Complete a chi-square test for these data to check whether
there is a statistically significant difference in responses from college graduates and non-graduates.

College Grad
Yes No

Support 154 132
Oppose 180 126
Do not know 104 131
Total 438 389

3.42 Coffee and Depression. Researchers conducted a study investigating the relationship
between caffeinated coffee consumption and risk of depression in women. They collected data
on 50,739 women free of depression symptoms at the start of the study in the year 1996, and
these women were followed through 2006. The researchers used questionnaires to collect data on
caffeinated coffee consumption, asked each individual about physician-diagnosed depression, and
also asked about the use of antidepressants. The table below shows the distribution of incidences
of depression by amount of caffeinated coffee consumption.53

Caffeinated coffee consumption
≤ 1 2-6 1 2-3 ≥ 4

cup/week cups/week cup/day cups/day cups/day Total

Clinical Yes 670 373 905 564 95 2,607
depression No 11,545 6,244 16,329 11,726 2,288 48,132

Total 12,215 6,617 17,234 12,290 2,383 50,739

(a) What type of test is appropriate for evaluating if there is an association between coffee intake
and depression?

(b) Write the hypotheses for the test you identified in part (a).

(c) Calculate the overall proportion of women who do and do not suffer from depression.

(d) Identify the expected count for the highlighted cell, and calculate the contribution of this cell
to the test statistic, i.e. (Observed− Expected)2/Expected.

(e) The test statistic is X2 = 20.93. What is the p-value?

(f) What is the conclusion of the hypothesis test?

(g) One of the authors of this study was quoted on the NYTimes as saying it was “too early to
recommend that women load up on extra coffee” based on just this study.54 Do you agree with
this statement? Explain your reasoning.

53M. Lucas et al. “Coffee, caffeine, and risk of depression among women”. In: Archives of internal
medicine 171.17 (2011), p. 1571.

54A. O’Connor. “Coffee Drinking Linked to Less Depression in Women”. In: New York Times (2011).

http://archinte.jamanetwork.com/data/Journals/INTEMED/22528/ioi15048_1571_1578.pdf
http://well.blogs.nytimes.com/2011/09/26/coffee-drinking-linked-to-less-depression-in-women
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3.43 Privacy on Facebook. A 2011 survey asked 806 randomly sampled adult Facebook users
about their Facebook privacy settings. One of the questions on the survey was, “Do you know
how to adjust your Facebook privacy settings to control what people can and cannot see?” The
responses are cross-tabulated based on gender.55

Gender
Male Female Total

Yes 288 378 666
Response No 61 62 123

Not sure 10 7 17
Total 359 447 806

(a) State appropriate hypotheses to test for independence of gender and whether or not Facebook
users know how to adjust their privacy settings.

(b) Verify any necessary conditions for the test and determine whether or not a chi-square test
can be completed.

3.44 Shipping holiday gifts. A December 2010 survey asked 500 randomly sampled Los
Angeles residents which shipping carrier they prefer to use for shipping holiday gifts. The table
below shows the distribution of responses by age group as well as the expected counts for each cell
(shown in parentheses).

Age
18-34 35-54 55+ Total

Shipping Method

USPS 72 (81) 97 (102) 76 (62) 245
UPS 52 (53) 76 (68) 34 (41) 162
FedEx 31 (21) 24 (27) 9 (16) 64
Something else 7 (5) 6 (7) 3 (4) 16
Not sure 3 (5) 6 (5) 4 (3) 13
Total 165 209 126 500

(a) State the null and alternative hypotheses for testing for independence of age and preferred
shipping method for holiday gifts among Los Angeles residents.

(b) Are the conditions for inference using a chi-square test satisfied?

55Survey USA, News Poll #17960, data collected February 16-17, 2011.

http://www.surveyusa.com/client/PollPrint.aspx?g=2ef98776-a34d-419f-bb2e-466ef4098289&d=0


Chapter 4

Inference for numerical data

Chapters 2 and 3 introduced us to inference for proportions using the normal model, and
in Section 3.3, we encountered the chi-square distribution, which is useful for working with
categorical data with many levels. In this chapter, our focus will be on numerical data,
where we will encounter two more distributions: the t distribution (looks a lot like the
normal distribution) and the F distribution. Our general approach will be:

1. Determine which point estimate or test statistic is useful.

2. Identify an appropriate distribution for the point estimate or test statistic.

3. Apply the hypothesis and confidence interval techniques from Chapter 2 using the
distribution from step 2.

4.1 One-sample means with the t distribution

The sampling distribution associated with a sample mean or difference of two sample means
is, if certain conditions are satisfied, nearly normal. However, this becomes more complex
when the sample size is small, where small here typically means a sample size smaller than
30 observations. For this reason, we’ll use a new distribution called the t distribution that
will often work for both small and large samples of numerical data.

4.1.1 Two examples using the normal distribution

Before we get started with the t distribution, let’s take a look at two applications where it
is okay to use the normal model for the sample mean. For the case of a single mean, the
standard error of the sample mean can be calculated as

SE =
σ√
n

where σ is the population standard deviation and n is the sample size. Generally we use
the sample standard deviation, denoted by s, in place of the population standard deviation
when we compute the standard error:

SE ≈ s√
n

If we look at this formula, there are some characteristics that we can think about intuitively.

163
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• If we examine the standard error formula, we would see that a larger s corresponds to
a larger SE. This makes intuitive sense: if the data are more volatile, then we’ll be
less certain of the location of the true mean, so the standard error should be bigger.
On the other hand, if the observations all fall very close together, then s will be small,
and the sample mean should be a more precise estimate of the true mean.

• In the formula, the larger the sample size n, the smaller the standard error. This
matches our intuition: we expect estimates to be more precise when we have more
data, so the standard error SE should get smaller when n gets bigger.

As we did with proportions, we’ll also need to check a few conditions before using the normal
model. We’ll forgo describing those details until later this section, but these conditions have
been verified for the two examples below.

 Example 4.1 We’ve taken a random sample of 100 runners from a race called the
Cherry Blossom Run in Washington, DC, which was a race with 16,924 participants.1

The sample data for the 100 runners is summarized in Table 4.1, histograms of the run
time and age of participants are in Figure 4.2, and summary statistics are available
in Table 4.3. Create a 95% confidence interval for the average time it takes runners
in the Cherry Blossom Run to complete the race.

We can use the same confidence interval formula for the mean that we used for a
proportion:

point estimate ± 1.96× SE

In this case, the best estimate of the overall mean is the sample mean, x̄ = 95.61
minutes. The standard error can be calculated using sample standard deviation
(s = 15.78), the sample size (n = 100), and the standard error formula:

SE =
s√
n

=
15.78√

100
= 1.578

Finally, we can calculate a 95% confidence interval:

point estimate ± z? × SE → 95.61± 1.96× 1.578 → (92.52, 98.70)

We are 95% confident that the average time for all runners in the 2012 Cherry Blossom
Run is between 92.52 and 98.70 minutes.

ID time age gender state
1 88.31 59 M MD
2 100.67 32 M VA
3 109.52 33 F VA
...

...
...

...
...

100 89.49 26 M DC

Table 4.1: Four observations for the run10Samp data set, which represents
a simple random sample of 100 runners from the 2012 Cherry Blossom Run.

1See www.cherryblossom.org.

http://www.cherryblossom.org
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Figure 4.2: Histograms of time and age for the sample Cherry Blossom
Run data. The average time is in the mid-90s, and the average age is in
the mid-30s. The age distribution is moderately skewed to the right.

time age

sample mean 95.61 35.05
sample median 95.37 32.50
sample st. dev. 15.78 8.97

Table 4.3: Point estimates and parameter values for the time variable.

⊙
Guided Practice 4.2 Use the data to calculate a 90% confidence interval for the
average age of participants in the 2012 Cherry Blossom Run. The conditions for
applying the normal model have already been verified.2

 Example 4.3 The nutrition label on a bag of potato chips says that a one ounce
(28 gram) serving of potato chips has 130 calories and contains ten grams of fat, with
three grams of saturated fat. A random sample of 35 bags yielded a sample mean
of 134 calories with a standard deviation of 17 calories. Is there evidence that the
nutrition label does not provide an accurate measure of calories in the bags of potato
chips? The conditions necessary for applying the normal model have been checked
and are satisfied.

The question has been framed in terms of two possibilities: the nutrition label accu-
rately lists the correct average calories per bag of chips or it does not, which may be
framed as a hypothesis test:

H0: The average is listed correctly. µ = 130

HA: The nutrition label is incorrect. µ 6= 130

The observed average is x̄ = 134 and the standard error may be calculated as SE =
17√
35

= 2.87. First, we draw a picture summarizing this scenario.

2As before, we identify the point estimate, x̄ = 35.05, and the standard error, SE = 8.97/
√

100 = 0.897.
Next, we apply the formula for a 90% confidence interval, which uses z? = 1.65: 35.05 ± 1.65 × 0.897 →
(33.57, 36.53). We are 90% confident that the average age of all participants in the 2012 Cherry Blossom
Run is between 33.57 and 36.53 years.
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124 130 136

We can compute a test statistic as the Z score:

Z =
134− 130

2.87
= 1.39

The upper-tail area is 0.0823, so the p-value is 2×0.0823 = 0.1646. Since the p-value
is larger than 0.05, we do not reject the null hypothesis. That is, there is not enough
evidence to show the nutrition label has incorrect information.

The normal model works well when the sample size is larger than about 30. For
smaller sample sizes, we run into a problem: our estimate of s, which is used to compute
the standard error, isn’t as reliable when the sample size is small. To solve this problem,
we’ll use a new distribution: the t distribution.

4.1.2 Introducing the t distribution

A t distribution, shown as a solid line in Figure 4.4, has a bell shape that looks very
similar to a normal distribution (dotted line). However, its tails are thicker, which means
observations are more likely to fall beyond two standard deviations from the mean than
under the normal distribution.3 When our sample is small, the value s used to compute
the standard error isn’t very reliable. The extra thick tails of the t distribution are exactly
the correction we need to resolve this problem.

−4 −2 0 2 4

Figure 4.4: Comparison of a t distribution (solid line) and a normal distri-
bution (dotted line).

The t distribution, always centered at zero, has a single parameter: degrees of freedom.
The degrees of freedom (df) describe the precise form of the bell-shaped t distribution.
Several t distributions are shown in Figure 4.5 with various degrees of freedom. When there
are more degrees of freedom, the t distribution looks very much like the standard normal
distribution.

3The standard deviation of the t distribution is actually a little more than 1. However, it is useful to
always think of the t distribution as having a standard deviation of 1 in all of our applications.
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Figure 4.5: The larger the degrees of freedom, the more closely the t dis-
tribution resembles the standard normal model.

Degrees of freedom (df)
The degrees of freedom describe the shape of the t distribution. The larger the
degrees of freedom, the more closely the distribution approximates the normal
model.

When the degrees of freedom is about 30 or more, the t distribution is nearly indis-
tinguishable from the normal distribution, e.g. see Figure 4.5. In Section 4.1.3, we relate
degrees of freedom to sample size.

We will find it very useful to become familiar with the t distribution, because it plays
a very similar role to the normal distribution during inference for numerical data. We
use a t table, partially shown in Table 4.6, in place of the normal probability table for
small sample numerical data. A larger table is presented in Appendix C.2 on page 342.
Alternatively, we could use statistical software to get this same information.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

...
...

...
...

...
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
∞ 1.28 1.65 1.96 2.33 2.58

Table 4.6: An abbreviated look at the t table. Each row represents a
different t distribution. The columns describe the cutoffs for specific tail
areas. The row with df = 18 has been highlighted.
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−4 −2 0 2 4

Figure 4.7: The t distribution with 18 degrees of freedom. The area below
-2.10 has been shaded.

Each row in the t table represents a t distribution with different degrees of freedom.
The columns correspond to tail probabilities. For instance, if we know we are working with
the t distribution with df = 18, we can examine row 18, which is highlighted in Table 4.6.
If we want the value in this row that identifies the cutoff for an upper tail of 10%, we can
look in the column where one tail is 0.100. This cutoff is 1.33. If we had wanted the cutoff
for the lower 10%, we would use -1.33. Just like the normal distribution, all t distributions
are symmetric.

 Example 4.4 What proportion of the t distribution with 18 degrees of freedom falls
below -2.10?

Just like a normal probability problem, we first draw the picture in Figure 4.7 and
shade the area below -2.10. To find this area, we identify the appropriate row: df =
18. Then we identify the column containing the absolute value of -2.10; it is the third
column. Because we are looking for just one tail, we examine the top line of the table,
which shows that a one tail area for a value in the third row corresponds to 0.025.
About 2.5% of the distribution falls below -2.10. In the next example we encounter
a case where the exact t value is not listed in the table.

 Example 4.5 A t distribution with 20 degrees of freedom is shown in the left panel
of Figure 4.8. Estimate the proportion of the distribution falling above 1.65.

We identify the row in the t table using the degrees of freedom: df = 20. Then we
look for 1.65; it is not listed. It falls between the first and second columns. Since
these values bound 1.65, their tail areas will bound the tail area corresponding to
1.65. We identify the one tail area of the first and second columns, 0.050 and 0.10,
and we conclude that between 5% and 10% of the distribution is more than 1.65
standard deviations above the mean. If we like, we can identify the precise area using
statistical software: 0.0573.

 Example 4.6 A t distribution with 2 degrees of freedom is shown in the right panel
of Figure 4.8. Estimate the proportion of the distribution falling more than 3 units
from the mean (above or below).

As before, first identify the appropriate row: df = 2. Next, find the columns that
capture 3; because 2.92 < 3 < 4.30, we use the second and third columns. Finally,
we find bounds for the tail areas by looking at the two tail values: 0.05 and 0.10. We
use the two tail values because we are looking for two (symmetric) tails.



4.1. ONE-SAMPLE MEANS WITH THE T DISTRIBUTION 169

−4 −2 0 2 4

c(
0,

 d
no

rm
(0

))

−4 −2 0 2 4

Figure 4.8: Left: The t distribution with 20 degrees of freedom, with the
area above 1.65 shaded. Right: The t distribution with 2 degrees of free-
dom, with the area further than 3 units from 0 shaded.

⊙
Guided Practice 4.7 What proportion of the t distribution with 19 degrees of
freedom falls above -1.79 units?4

4.1.3 Applying the t distribution to the single-mean situation

When estimating the mean and standard error from a sample of numerical data, the t
distribution is a little more accurate than the normal model. This is true for both small
and large samples, though the benefits for larger samples are limited.

Using the t distribution
Use the t distribution for inference of the sample mean when observations are
independent and nearly normal. You may relax the nearly normal condition as
the sample size increases. For example, the data distribution may be moderately
skewed when the sample size is at least 30.

Before applying the t distribution for inference about a single mean, we check two
conditions.

Independence of observations. We verify this condition just as we did before. We
collect a simple random sample from less than 10% of the population, or if the data
are from an experiment or random process, we carefully check to the best of our
abilities that the observations were independent.

Observations come from a nearly normal distribution. This second condition is dif-
ficult to verify with small data sets. We often (i) take a look at a plot of the data for
obvious departures from the normal model, usually in the form of prominent outliers,
and (ii) consider whether any previous experiences alert us that the data may not be
nearly normal. However, if the sample size is somewhat large, then we can relax this
condition, e.g. moderate skew is acceptable when the sample size is 30 or more, and
strong skew is acceptable when the size is about 60 or more.

When examining a sample mean and estimated standard error from a sample of n inde-
pendent and nearly normal observations, we use a t distribution with n − 1 degrees of
freedom (df). For example, if the sample size was 19, then we would use the t distribution

4We find the shaded area above -1.79 (we leave the picture to you). The small left tail is between 0.025
and 0.05, so the larger upper region must have an area between 0.95 and 0.975.
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with df = 19 − 1 = 18 degrees of freedom and proceed in the same way as we did in
Chapter 3, except that now we use the t table.

Degrees of freedom for a single sample
If the sample has n observations and we are examining a single mean, then we use
the t distribution with df = n− 1 degrees of freedom.

4.1.4 One sample t confidence intervals

Dolphins are at the top of the oceanic food chain, which causes dangerous substances such
as mercury to concentrate in their organs and muscles. This is an important problem for
both dolphins and other animals, like humans, who occasionally eat them. For instance,
this is particularly relevant in Japan where school meals have included dolphin at times.

Figure 4.9: A Risso’s dolphin.
—————————–
Photo by Mike Baird (http://www.bairdphotos.com/).

Here we identify a confidence interval for the average mercury content in dolphin
muscle using a sample of 19 Risso’s dolphins from the Taiji area in Japan.5 The data are
summarized in Table 4.10. The minimum and maximum observed values can be used to
evaluate whether or not there are obvious outliers or skew.

n x̄ s minimum maximum
19 4.4 2.3 1.7 9.2

Table 4.10: Summary of mercury content in the muscle of 19 Risso’s dol-
phins from the Taiji area. Measurements are in µg/wet g (micrograms of
mercury per wet gram of muscle).

5Taiji was featured in the movie The Cove, and it is a significant source of dolphin and whale meat in
Japan. Thousands of dolphins pass through the Taiji area annually, and we will assume these 19 dolphins
represent a simple random sample from those dolphins. Data reference: Endo T and Haraguchi K. 2009.
High mercury levels in hair samples from residents of Taiji, a Japanese whaling town. Marine Pollution
Bulletin 60(5):743-747.

http://www.bairdphotos.com/
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 Example 4.8 Are the independence and normality conditions satisfied for this
data set?

The observations are a simple random sample and consist of less than 10% of the
population, therefore independence is reasonable. Ideally we would see a visualization
of the data to check for skew and outliers. However, we can instead examine the
summary statistics in Table 4.10, which do not suggest any skew or outliers. All
observations are within 2.5 standard deviations of the mean. Based on this evidence,
the normality assumption seems reasonable.

In the normal model, we used z? and the standard error to determine the width of
a confidence interval. We revise the confidence interval formula slightly when using the t
distribution:

x̄ ± t?df × SE

The sample mean and estimated standard error are computed just as in our earlier examples

t?df
Multiplication
factor for
t conf. intervalthat used the normal model (x̄ = 4.4 and SE = s/

√
n = 0.528). The value t?df is a cutoff

we obtain based on the confidence level and the t distribution with df degrees of freedom.
Before determining this cutoff, we will first need the degrees of freedom.

In our current example, we should use the t distribution with df = n−1 = 19−1 = 18
degrees of freedom. Then identifying t?18 is similar to how we found z?:

• For a 95% confidence interval, we want to find the cutoff t?18 such that 95% of the t
distribution is between -t?18 and t?18.

• We look in the t table on page 167, find the column with area totaling 0.05 in the
two tails (third column), and then the row with 18 degrees of freedom: t?18 = 2.10.

Generally the value of t?df is slightly larger than what we would get under the normal model
with z?.

Finally, we can substitute all the values into the confidence interval equation to create
the 95% confidence interval for the average mercury content in muscles from Risso’s dolphins
that pass through the Taiji area:

x̄ ± t?18 × SE → 4.4 ± 2.10× 0.528 → (3.29, 5.51)

We are 95% confident the average mercury content of muscles in Risso’s dolphins is between
3.29 and 5.51 µg/wet gram, which is considered extremely high.

Finding a t confidence interval for the mean
Based on a sample of n independent and nearly normal observations, a confidence
interval for the population mean is

x̄ ± t?df × SE

where x̄ is the sample mean, t?df corresponds to the confidence level and degrees of
freedom, and SE is the standard error as estimated by the sample. The normality
condition may be relaxed for larger sample sizes.



172 CHAPTER 4. INFERENCE FOR NUMERICAL DATA

⊙
Guided Practice 4.9 The FDA’s webpage provides some data on mercury con-
tent of fish.6 Based on a sample of 15 croaker white fish (Pacific), a sample mean
and standard deviation were computed as 0.287 and 0.069 ppm (parts per million),
respectively. The 15 observations ranged from 0.18 to 0.41 ppm. We will assume
these observations are independent. Based on the summary statistics of the data, do
you have any objections to the normality condition of the individual observations?7

 Example 4.10 Estimate the standard error of the sample mean using the data
summaries in Guided Practice 4.9. If we are to use the t distribution to create a 90%
confidence interval for the actual mean of the mercury content, identify the degrees
of freedom we should use and also find t?df .

The standard error: SE = 0.069√
15

= 0.0178. Degrees of freedom: df = n− 1 = 14.

Looking in the column where two tails is 0.100 (for a 90% confidence interval) and
row df = 14, we identify t?14 = 1.76.⊙
Guided Practice 4.11 Using the results of Guided Practice 4.9 and Example 4.10,
compute a 90% confidence interval for the average mercury content of croaker white
fish (Pacific).8

4.1.5 One sample t tests

Is the typical US runner getting faster or slower over time? We consider this question in the
context of the Cherry Blossom Run, comparing runners in 2006 and 2012. Technological
advances in shoes, training, and diet might suggest runners would be faster in 2012. An
opposing viewpoint might say that with the average body mass index on the rise, people
tend to run slower. In fact, all of these components might be influencing run time.

The average time for all runners who finished the Cherry Blossom Run in 2006 was
93.29 minutes (93 minutes and about 17 seconds). We want to determine using data from
100 participants in the 2012 Cherry Blossom Run whether runners in this race are getting
faster or slower, versus the other possibility that there has been no change.⊙

Guided Practice 4.12 What are appropriate hypotheses for this context?9

⊙
Guided Practice 4.13 The data come from a simple random sample from less
than 10% of all participants, so the observations are independent. However, should
we be worried about skew in the data? A histogram of the differences was shown in
the left panel of Figure 4.2 on page 165. 10

With independence satisfied and skew not a concern, we can proceed with performing
a hypothesis test using the t distribution.

6http://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm115644.htm
7There are no obvious outliers; all observations are within 2 standard deviations of the mean. If there

is skew, it is not evident. There are no red flags for the normal model based on this (limited) information,
and we do not have reason to believe the mercury content is not nearly normal in this type of fish.

8x̄ ± t?14 × SE → 0.287 ± 1.76× 0.0178 → (0.256, 0.318). We are 90% confident that the average
mercury content of croaker white fish (Pacific) is between 0.256 and 0.318 ppm.

9H0: The average 10 mile run time was the same for 2006 and 2012. µ = 93.29 minutes. HA: The
average 10 mile run time for 2012 was different than that of 2006. µ 6= 93.29 minutes.

10With a sample of 100, we should only be concerned if there is extreme skew. The histogram of the
data suggest, at worst, slight skew.
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⊙
Guided Practice 4.14 The sample mean and sample standard deviation are 95.61
and 15.78 minutes, respectively. Recall that the sample size is 100. What is the p-
value for the test, and what is your conclusion?11

When using a t distribution, we use a T score (same as Z score)
To help us remember to use the t distribution, we use a T to represent the test
statistic, and we often call this a T score. The Z score and T score are computed
in the exact same way and are conceptually identical: each represents how many
standard errors the observed value is from the null value.

4.2 Paired data

Are textbooks actually cheaper online? Here we compare the price of textbooks at the
University of California, Los Angeles’ (UCLA’s) bookstore and prices at Amazon.com.
Seventy-three UCLA courses were randomly sampled in Spring 2010, representing less than
10% of all UCLA courses.12 A portion of the data set is shown in Table 4.11.

dept course ucla amazon diff
1 Am Ind C170 27.67 27.95 -0.28
2 Anthro 9 40.59 31.14 9.45
3 Anthro 135T 31.68 32.00 -0.32
4 Anthro 191HB 16.00 11.52 4.48
...

...
...

...
...

...
72 Wom Std M144 23.76 18.72 5.04
73 Wom Std 285 27.70 18.22 9.48

Table 4.11: Six cases of the textbooks data set.

4.2.1 Paired observations

Each textbook has two corresponding prices in the data set: one for the UCLA bookstore
and one for Amazon. Therefore, each textbook price from the UCLA bookstore has a
natural correspondence with a textbook price from Amazon. When two sets of observations
have this special correspondence, they are said to be paired.

Paired data
Two sets of observations are paired if each observation in one set has a special
correspondence or connection with exactly one observation in the other data set.

11With the conditions satisfied for the t distribution, we can compute the standard error (SE =
15.78/

√
100 = 1.58 and the T score: T = 95.61−93.29

1.58
= 1.47. (There is more on this after the guided

practice, but a T score and Z score are basically the same thing.) For df = 100 − 1 = 99, we would find
T = 1.47 to fall between the first and second column, which means the p-value is between 0.05 and 0.10
(use df = 90 and consider two tails since the test is two-sided). Because the p-value is greater than 0.05,
we do not reject the null hypothesis. That is, the data do not provide strong evidence that the average run
time for the Cherry Blossom Run in 2012 is any different than the 2006 average.

12When a class had multiple books, only the most expensive text was considered.
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Figure 4.12: Histogram of the difference in price for each book sampled.
These data are strongly skewed.

To analyze paired data, it is often useful to look at the difference in outcomes of each
pair of observations. In the textbook data set, we look at the difference in prices, which is
represented as the diff variable in the textbooks data. Here the differences are taken as

UCLA price−Amazon price

for each book. It is important that we always subtract using a consistent order; here
Amazon prices are always subtracted from UCLA prices. A histogram of these differences
is shown in Figure 4.12. Using differences between paired observations is a common and
useful way to analyze paired data.

⊙
Guided Practice 4.15 The first difference shown in Table 4.11 is computed as
27.67−27.95 = −0.28. Verify the differences are calculated correctly for observations
2 and 3.13

4.2.2 Inference for paired data

To analyze a paired data set, we simply analyze the differences. We can use the same t
distribution techniques we applied in the last section.

n
diff

x̄
diff

s
diff

73 12.76 14.26

Table 4.13: Summary statistics for the price differences. There were 73
books, so there are 73 differences.

13Observation 2: 40.59− 31.14 = 9.45. Observation 3: 31.68− 32.00 = −0.32.
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 Example 4.16 Set up and implement a hypothesis test to determine whether, on
average, there is a difference between Amazon’s price for a book and the UCLA
bookstore’s price.

We are considering two scenarios: there is no difference or there is some difference in
average prices.

H0: µdiff = 0. There is no difference in the average textbook price.

HA: µdiff 6= 0. There is a difference in average prices.

Can the t distribution be used for this application? The observations are based on
a simple random sample from less than 10% of all books sold at the bookstore, so
independence is reasonable. While the distribution is strongly skewed, the sample is
reasonably large (n = 73), so we can proceed. Because the conditions are reasonably
satisfied, we can apply the t distribution to this setting.

We compute the standard error associated with x̄diff using the standard deviation
of the differences (s

diff
= 14.26) and the number of differences (n

diff
= 73):

SEx̄diff
=

sdiff√
ndiff

=
14.26√

73
= 1.67

To visualize the p-value, the sampling distribution of x̄diff is drawn as though H0

is true, which is shown in Figure 4.14. The p-value is represented by the two (very)
small tails.

To find the tail areas, we compute the test statistic, which is the T score of x̄diff
under the null condition that the actual mean difference is 0:

T =
x̄diff − 0

SExdiff

=
12.76− 0

1.67
= 7.59

The degrees of freedom are df = 73 − 1 = 72. If we examined Appendix C.2 on
page 342, we would see that this value is larger than any in the 70 df row (we round
down for df when using the table), meaning the two-tailed p-value is less than 0.01.
If we used statistical software, we would find the p-value is less than 1-in-10 billion!
Because the p-value is less than 0.05, we reject the null hypothesis. We have found
convincing evidence that Amazon is, on average, cheaper than the UCLA bookstore
for UCLA course textbooks.

µ0 = 0 xdiff = 12.76

right tailleft tail

Figure 4.14: Sampling distribution for the mean difference in book prices,
if the true average difference is zero.
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⊙
Guided Practice 4.17 Create a 95% confidence interval for the average price
difference between books at the UCLA bookstore and books on Amazon.14

In the textbook price example, we applied the t distribution. However, as we men-
tioned in the last section, the t distribution looks a lot like the normal distribution when
the degrees of freedom are larger than about 30. In such cases, including this one, it would
be reasonable to use the normal distribution in place of the t distribution.

4.3 Difference of two means

In this section we consider a difference in two population means, µ1−µ2, under the condition
that the data are not paired. Just as with a single sample, we identify conditions to ensure
we can use the t distribution with a point estimate of the difference, x̄1 − x̄2.

We apply these methods in three contexts: determining whether stem cells can im-
prove heart function, exploring the impact of pregnant womens’ smoking habits on birth
weights of newborns, and exploring whether there is statistically significant evidence that
one variations of an exam is harder than another variation. This section is motivated by
questions like “Is there convincing evidence that newborns from mothers who smoke have
a different average birth weight than newborns from mothers who don’t smoke?”

4.3.1 Confidence interval for a differences of means

Does treatment using embryonic stem cells (ESCs) help improve heart function following
a heart attack? Table 4.15 contains summary statistics for an experiment to test ESCs
in sheep that had a heart attack. Each of these sheep was randomly assigned to the
ESC or control group, and the change in their hearts’ pumping capacity was measured in
the study. A positive value corresponds to increased pumping capacity, which generally
suggests a stronger recovery. Our goal will be to identify a 95% confidence interval for the
effect of ESCs on the change in heart pumping capacity relative to the control group.

A point estimate of the difference in the heart pumping variable can be found using
the difference in the sample means:

x̄esc − x̄control = 3.50− (−4.33) = 7.83

n x̄ s
ESCs 9 3.50 5.17
control 9 -4.33 2.76

Table 4.15: Summary statistics of the embryonic stem cell study.

14Conditions have already verified and the standard error computed in Example 4.16. To find the
interval, identify t?72 (use df = 70 in the table, t?70 = 1.99) and plug it, the point estimate, and the standard
error into the confidence interval formula:

point estimate ± z?SE → 12.76 ± 1.99× 1.67 → (9.44, 16.08)

We are 95% confident that Amazon is, on average, between $9.44 and $16.08 cheaper than the UCLA
bookstore for UCLA course books.
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Figure 4.16: Histograms for both the embryonic stem cell group and the
control group. Higher values are associated with greater improvement. We
don’t see any evidence of skew in these data; however, it is worth noting
that skew would be difficult to detect with such a small sample.

Using the t distribution for a difference in means
The t distribution can be used for inference when working with the standardized
difference of two means if (1) each sample meets the conditions for using the t
distribution and (2) the samples are independent.

 Example 4.18 Can the point estimate, x̄esc − x̄control = 7.83, be analyzed using
the t distribution?

We check the two required conditions:

1. In this study, the sheep were independent of each other. Additionally, the distri-
butions in Figure 4.16 don’t show any clear deviations from normality, where we
watch for prominent outliers in particular for such small samples. These findings
imply each sample mean could itself be modeled using a t distribution.

2. The sheep in each group were also independent of each other.

Because both conditions are met, we can use the t distribution to model the difference
of the two sample means.
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Before we construct a confidence interval, we must calculate the standard error of the
point estimate of the difference. For this, we use the following formula, where just as before
we substitute the sample standard deviations into the formula:

SEx̄esc−x̄control
=

√
σ2
esc

nesc
+
σ2
control

ncontrol

≈

√
s2
esc

nesc
+
s2
control

ncontrol
=

√
5.172

9
+

2.762

9
= 1.95

Because we will use the t distribution, we also must identify the appropriate degrees of
freedom. This can be done using computer software. An alternative technique is to use the
smaller of n1 − 1 and n2 − 1, which is the method we will typically apply in the examples
and guided practice.15

Distribution of a difference of sample means
The sample difference of two means, x̄1−x̄2, can be modeled using the t distribution
and the standard error

SEx̄1−x̄2
=
√

s21
n1

+
s22
n2

(4.19)

when each sample mean can itself be modeled using a t distribution and the samples
are independent. To calculate the degrees of freedom, use statistical software or
the smaller of n1 − 1 and n2 − 1.

 Example 4.20 Calculate a 95% confidence interval for the effect of ESCs on the
change in heart pumping capacity of sheep after they’ve suffered a heart attack.

We will use the sample difference and the standard error for that point estimate from
our earlier calculations:

x̄esc − x̄control = 7.83

SE =

√
5.172

9
+

2.762

9
= 1.95

Using df = 8, we can identify the appropriate t?df = t?8 for a 95% confidence interval
as 2.31. Finally, we can enter the values into the confidence interval formula:

point estimate ± z?SE → 7.83 ± 2.31× 1.95 → (3.38, 12.38)

We are 95% confident that embryonic stem cells improve the heart’s pumping function
in sheep that have suffered a heart attack by 3.38% to 12.38%.

15This technique for degrees of freedom is conservative with respect to a Type 1 Error; it is more difficult
to reject the null hypothesis using this df method. In this example, computer software would have provided
us a more precise degrees of freedom of df = 12.225.
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4.3.2 Hypothesis tests based on a difference in means

A data set called baby smoke represents a random sample of 150 cases of mothers and their
newborns in North Carolina over a year. Four cases from this data set are represented in
Table 4.17. We are particularly interested in two variables: weight and smoke. The
weight variable represents the weights of the newborns and the smoke variable describes
which mothers smoked during pregnancy. We would like to know, is there convincing
evidence that newborns from mothers who smoke have a different average birth weight
than newborns from mothers who don’t smoke? We will use the North Carolina sample
to try to answer this question. The smoking group includes 50 cases and the nonsmoking
group contains 100 cases, represented in Figure 4.18.

fAge mAge weeks weight sexBaby smoke
1 NA 13 37 5.00 female nonsmoker
2 NA 14 36 5.88 female nonsmoker
3 19 15 41 8.13 male smoker
...

...
...

...
...

...
150 45 50 36 9.25 female nonsmoker

Table 4.17: Four cases from the baby smoke data set. The value “NA”,
shown for the first two entries of the first variable, indicates that piece of
data is missing.

Newborn weights (lbs) from mothers who smoked

0 2 4 6 8 10

Newborn weights (lbs) from mothers who did not smoke

0 2 4 6 8 10

Figure 4.18: The top panel represents birth weights for infants whose moth-
ers smoked. The bottom panel represents the birth weights for infants
whose mothers who did not smoke. The distributions exhibit moderate-to-
strong and strong skew, respectively.
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 Example 4.21 Set up appropriate hypotheses to evaluate whether there is a rela-
tionship between a mother smoking and average birth weight.

The null hypothesis represents the case of no difference between the groups.

H0: There is no difference in average birth weight for newborns from mothers who
did and did not smoke. In statistical notation: µn−µs = 0, where µn represents
non-smoking mothers and µs represents mothers who smoked.

HA: There is some difference in average newborn weights from mothers who did and
did not smoke (µn − µs 6= 0).

We check the two conditions necessary to apply the t distribution to the difference in
sample means. (1) Because the data come from a simple random sample and consist of
less than 10% of all such cases, the observations are independent. Additionally, while each
distribution is strongly skewed, the sample sizes of 50 and 100 would make it reasonable
to model each mean separately using a t distribution. The skew is reasonable for these
sample sizes of 50 and 100. (2) The independence reasoning applied in (1) also ensures
the observations in each sample are independent. Since both conditions are satisfied, the
difference in sample means may be modeled using a t distribution.

smoker nonsmoker

mean 6.78 7.18
st. dev. 1.43 1.60
samp. size 50 100

Table 4.19: Summary statistics for the baby smoke data set.

⊙
Guided Practice 4.22 The summary statistics in Table 4.19 may be useful for
this exercise. (a) What is the point estimate of the population difference, µn − µs?
(b) Compute the standard error of the point estimate from part (a).16

 Example 4.23 Draw a picture to represent the p-value for the hypothesis test from
Example 4.21.

To depict the p-value, we draw the distribution of the point estimate as though H0

were true and shade areas representing at least as much evidence against H0 as what
was observed. Both tails are shaded because it is a two-sided test.

16(a) The difference in sample means is an appropriate point estimate: x̄n− x̄s = 0.40. (b) The standard
error of the estimate can be estimated using Equation (4.19):

SE =

√
σ2
n

nn
+
σ2
s

ns
≈

√
s2n
nn

+
s2s
ns

=

√
1.602

100
+

1.432

50
= 0.26
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µn − µs = 0 obs. diff

 Example 4.24 Compute the p-value of the hypothesis test using the figure in Ex-
ample 4.23, and evaluate the hypotheses using a significance level of α = 0.05.

We start by computing the T score:

T =
0.40− 0

0.26
= 1.54

Next, we compare this value to values in the t table in Appendix C.2 on page 342,
where we use the smaller of nn − 1 = 99 and ns − 1 = 49 as the degrees of freedom:
df = 49. The T score falls between the first and second columns in the df = 49 row of
the t table, meaning the two-tailed p-value falls between 0.10 and 0.20 (reminder, find
tail areas along the top of the table). This p-value is larger than the significance value,
0.05, so we fail to reject the null hypothesis. There is insufficient evidence to say there
is a difference in average birth weight of newborns from North Carolina mothers who
did smoke during pregnancy and newborns from North Carolina mothers who did not
smoke during pregnancy.⊙
Guided Practice 4.25 Does the conclusion to Example 4.24 mean that smoking
and average birth weight are unrelated?17

⊙
Guided Practice 4.26 If we made a Type 2 Error and there is a difference, what
could we have done differently in data collection to be more likely to detect such a
difference?18

4.3.3 Case study: two versions of a course exam

An instructor decided to run two slight variations of the same exam. Prior to passing
out the exams, she shuffled the exams together to ensure each student received a random
version. Summary statistics for how students performed on these two exams are shown in
Table 4.20. Anticipating complaints from students who took Version B, she would like to
evaluate whether the difference observed in the groups is so large that it provides convincing
evidence that Version B was more difficult (on average) than Version A.⊙

Guided Practice 4.27 Construct a hypotheses to evaluate whether the observed
difference in sample means, x̄A − x̄B = 5.3, is due to chance.19

17Absolutely not. It is possible that there is some difference but we did not detect it. If there is a
difference, we made a Type 2 Error. Notice: we also don’t have enough information to, if there is an actual
difference difference, confidently say which direction that difference would be in.

18We could have collected more data. If the sample sizes are larger, we tend to have a better shot at
finding a difference if one exists.

19Because the teacher did not expect one exam to be more difficult prior to examining the test results,
she should use a two-sided hypothesis test. H0: the exams are equally difficult, on average. µA − µB = 0.
HA: one exam was more difficult than the other, on average. µA − µB 6= 0.
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Version n x̄ s min max
A 30 79.4 14 45 100
B 27 74.1 20 32 100

Table 4.20: Summary statistics of scores for each exam version.

⊙
Guided Practice 4.28 To evaluate the hypotheses in Guided Practice 4.27 using
the t distribution, we must first verify assumptions. (a) Does it seem reasonable that
the scores are independent within each group? (b) What about the normality / skew
condition for observations in each group? (c) Do you think scores from the two groups
would be independent of each other, i.e. the two samples are independent?20

After verifying the conditions for each sample and confirming the samples are indepen-
dent of each other, we are ready to conduct the test using the t distribution. In this case,
we are estimating the true difference in average test scores using the sample data, so the
point estimate is x̄A − x̄B = 5.3. The standard error of the estimate can be calculated as

SE =

√
s2
A

nA
+
s2
B

nB
=

√
142

30
+

202

27
= 4.62

Finally, we construct the test statistic:

T =
point estimate− null value

SE
=

(79.4− 74.1)− 0

4.62
= 1.15

If we have a computer handy, we can identify the degrees of freedom as 45.97. Otherwise
we use the smaller of n1 − 1 and n2 − 1: df = 26.

−3 −2 −1 0 1 2 3

T = 1.15

Figure 4.21: The t distribution with 26 degrees of freedom. The shaded
right tail represents values with T ≥ 1.15. Because it is a two-sided test,
we also shade the corresponding lower tail.

20(a) It is probably reasonable to conclude the scores are independent, provided there was no cheating.
(b) The summary statistics suggest the data are roughly symmetric about the mean, and it doesn’t seem
unreasonable to suggest the data might be normal. Note that since these samples are each nearing 30,
moderate skew in the data would be acceptable. (c) It seems reasonable to suppose that the samples are
independent since the exams were handed out randomly.
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 Example 4.29 Identify the p-value using df = 26 and provide a conclusion in the
context of the case study.

We examine row df = 26 in the t table. Because this value is smaller than the value
in the left column, the p-value is larger than 0.200 (two tails!). Because the p-value is
so large, we do not reject the null hypothesis. That is, the data do not convincingly
show that one exam version is more difficult than the other, and the teacher should
not be convinced that she should add points to the Version B exam scores.

4.3.4 Summary for inference using the t distribution

Hypothesis tests. When applying the t distribution for a hypothesis test, we proceed as
follows:

• Write appropriate hypotheses.

• Verify conditions for using the t distribution.

– One-sample or differences from paired data: the observations (or differences)
must be independent and nearly normal. For larger sample sizes, we can relax
the nearly normal requirement, e.g. slight skew is okay or sample sizes of 15,
moderate skew for sample sizes of 30, and strong skew for sample sizes of 60.

– For a difference of means when the data are not paired: each sample mean must
separately satisfy the one-sample conditions for the t distribution, and the data
in the groups must also be independent.

• Compute the point estimate of interest, the standard error, and the degrees of free-
dom. For df , use n − 1 for one sample, and for two samples use either statistical
software or the smaller of n1 − 1 and n2 − 1.

• Compute the T score and p-value.

• Make a conclusion based on the p-value, and write a conclusion in context and in
plain language so anyone can understand the result.

Confidence intervals. Similarly, the following is how we generally computed a confidence
interval using a t distribution:

• Verify conditions for using the t distribution. (See above.)

• Compute the point estimate of interest, the standard error, the degrees of freedom,
and t?df .

• Calculate the confidence interval using the general formula, point estimate ±t?dfSE.

• Put the conclusions in context and in plain language so even non-statisticians can
understand the results.

4.3.5 Pooled standard deviation estimate (special topic)

Occasionally, two populations will have standard deviations that are so similar that they
can be treated as identical. For example, historical data or a well-understood biological
mechanism may justify this strong assumption. In such cases, we can make the t distribution
approach slightly more precise by using a pooled standard deviation.
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The pooled standard deviation of two groups is a way to use data from both
samples to better estimate the standard deviation and standard error. If s1 and s2 are
the standard deviations of groups 1 and 2 and there are good reasons to believe that the
population standard deviations are equal, then we can obtain an improved estimate of the
group variances by pooling their data:

s2
pooled =

s2
1 × (n1 − 1) + s2

2 × (n2 − 1)

n1 + n2 − 2

where n1 and n2 are the sample sizes, as before. To use this new statistic, we substitute
s2
pooled in place of s2

1 and s2
2 in the standard error formula, and we use an updated formula

for the degrees of freedom:

df = n1 + n2 − 2

The benefits of pooling the standard deviation are realized through obtaining a better
estimate of the standard deviation for each group and using a larger degrees of freedom
parameter for the t distribution. Both of these changes may permit a more accurate model
of the sampling distribution of x̄1 − x̄2.

Caution: Pooling standard deviations should be done only after careful
research
A pooled standard deviation is only appropriate when background research indi-
cates the population standard deviations are nearly equal. When the sample size
is large and the condition may be adequately checked with data, the benefits of
pooling the standard deviations greatly diminishes.

4.4 Comparing many means with ANOVA
(special topic)

Sometimes we want to compare means across many groups. We might initially think to
do pairwise comparisons; for example, if there were three groups, we might be tempted to
compare the first mean with the second, then with the third, and then finally compare the
second and third means for a total of three comparisons. However, this strategy can be
treacherous. If we have many groups and do many comparisons, it is likely that we will
eventually find a difference just by chance, even if there is no difference in the populations.

In this section, we will learn a new method called analysis of variance (ANOVA)
and a new test statistic called F . ANOVA uses a single hypothesis test to check whether
the means across many groups are equal:

H0: The mean outcome is the same across all groups. In statistical notation, µ1 = µ2 =
· · · = µk where µi represents the mean of the outcome for observations in category i.

HA: At least one mean is different.

Generally we must check three conditions on the data before performing ANOVA:

• the observations are independent within and across groups,

• the data within each group are nearly normal, and

• the variability across the groups is about equal.
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When these three conditions are met, we may perform an ANOVA to determine whether
the data provide strong evidence against the null hypothesis that all the µi are equal.

 Example 4.30 College departments commonly run multiple lectures of the same
introductory course each semester because of high demand. Consider a statistics
department that runs three lectures of an introductory statistics course. We might
like to determine whether there are statistically significant differences in first exam
scores in these three classes (A, B, and C). Describe appropriate hypotheses to
determine whether there are any differences between the three classes.

The hypotheses may be written in the following form:

H0: The average score is identical in all lectures. Any observed difference is due to
chance. Notationally, we write µA = µB = µC .

HA: The average score varies by class. We would reject the null hypothesis in favor
of the alternative hypothesis if there were larger differences among the class
averages than what we might expect from chance alone.

Strong evidence favoring the alternative hypothesis in ANOVA is described by un-
usually large differences among the group means. We will soon learn that assessing the
variability of the group means relative to the variability among individual observations
within each group is key to ANOVA’s success.

 Example 4.31 Examine Figure 4.22. Compare groups I, II, and III. Can you visu-
ally determine if the differences in the group centers is due to chance or not? Now
compare groups IV, V, and VI. Do these differences appear to be due to chance?
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Figure 4.22: Side-by-side dot plot for the outcomes for six groups.

Any real difference in the means of groups I, II, and III is difficult to discern, because
the data within each group are very volatile relative to any differences in the average
outcome. On the other hand, it appears there are differences in the centers of groups
IV, V, and VI. For instance, group V appears to have a higher mean than that of
the other two groups. Investigating groups IV, V, and VI, we see the differences in
the groups’ centers are noticeable because those differences are large relative to the
variability in the individual observations within each group.
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4.4.1 Is batting performance related to player position in MLB?

We would like to discern whether there are real differences between the batting performance
of baseball players according to their position: outfielder (OF), infielder (IF), designated
hitter (DH), and catcher (C). We will use a data set called bat10, which includes batting
records of 327 Major League Baseball (MLB) players from the 2010 season. Six of the 327
cases represented in bat10 are shown in Table 4.23, and descriptions for each variable are
provided in Table 4.24. The measure we will use for the player batting performance (the
outcome variable) is on-base percentage (OBP). The on-base percentage roughly represents
the fraction of the time a player successfully gets on base or hits a home run.

name team position AB H HR RBI AVG OBP
1 I Suzuki SEA OF 680 214 6 43 0.315 0.359
2 D Jeter NYY IF 663 179 10 67 0.270 0.340
3 M Young TEX IF 656 186 21 91 0.284 0.330
...

...
...

...
...

...
...

...
325 B Molina SF C 202 52 3 17 0.257 0.312
326 J Thole NYM C 202 56 3 17 0.277 0.357
327 C Heisey CIN OF 201 51 8 21 0.254 0.324

Table 4.23: Six cases from the bat10 data matrix.

variable description

name Player name
team The abbreviated name of the player’s team
position The player’s primary field position (OF, IF, DH, C)
AB Number of opportunities at bat
H Number of hits
HR Number of home runs
RBI Number of runs batted in
AVG Batting average, which is equal to H/AB
OBP On-base percentage, which is roughly equal to the fraction

of times a player gets on base or hits a home run

Table 4.24: Variables and their descriptions for the bat10 data set.

⊙
Guided Practice 4.32 The null hypothesis under consideration is the following:
µOF = µIF = µDH = µC. Write the null and corresponding alternative hypotheses in
plain language.21

 Example 4.33 The player positions have been divided into four groups: outfield
(OF), infield (IF), designated hitter (DH), and catcher (C). What would be an appro-
priate point estimate of the on-base percentage by outfielders, µOF?

A good estimate of the on-base percentage by outfielders would be the sample average
of AVG for just those players whose position is outfield: x̄OF = 0.334.

21H0: The average on-base percentage is equal across the four positions. HA: The average on-base
percentage varies across some (or all) groups.
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Figure 4.26: Side-by-side box plot of the on-base percentage for 327 players
across four groups. There is one prominent outlier visible in the infield
group, but with 154 observations in the infield group, this outlier is not a
concern.

Table 4.25 provides summary statistics for each group. A side-by-side box plot for
the on-base percentage is shown in Figure 4.26. Notice that the variability appears to
be approximately constant across groups; nearly constant variance across groups is an
important assumption that must be satisfied before we consider the ANOVA approach.

OF IF DH C

Sample size (ni) 120 154 14 39
Sample mean (x̄i) 0.334 0.332 0.348 0.323
Sample SD (si) 0.029 0.037 0.036 0.045

Table 4.25: Summary statistics of on-base percentage, split by player posi-
tion.

 Example 4.34 The largest difference between the sample means is between the
designated hitter and the catcher positions. Consider again the original hypotheses:

H0: µOF = µIF = µDH = µC
HA: The average on-base percentage (µi) varies across some (or all) groups.

Why might it be inappropriate to run the test by simply estimating whether the
difference of µDH and µC is statistically significant at a 0.05 significance level?

The primary issue here is that we are inspecting the data before picking the groups
that will be compared. It is inappropriate to examine all data by eye (informal
testing) and only afterwards decide which parts to formally test. This is called data
snooping or data fishing. Naturally we would pick the groups with the large
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differences for the formal test, leading to an inflation in the Type 1 Error rate. To
understand this better, let’s consider a slightly different problem.

Suppose we are to measure the aptitude for students in 20 classes in a large elementary
school at the beginning of the year. In this school, all students are randomly assigned
to classrooms, so any differences we observe between the classes at the start of the
year are completely due to chance. However, with so many groups, we will probably
observe a few groups that look rather different from each other. If we select only
these classes that look so different, we will probably make the wrong conclusion that
the assignment wasn’t random. While we might only formally test differences for a
few pairs of classes, we informally evaluated the other classes by eye before choosing
the most extreme cases for a comparison.

For additional information on the ideas expressed in Example 4.34, we recommend
reading about the prosecutor’s fallacy.22

In the next section we will learn how to use the F statistic and ANOVA to test
whether observed differences in means could have happened just by chance even if there
was no difference in the respective population means.

4.4.2 Analysis of variance (ANOVA) and the F test

The method of analysis of variance in this context focuses on answering one question:
is the variability in the sample means so large that it seems unlikely to be from chance
alone? This question is different from earlier testing procedures since we will simultaneously
consider many groups, and evaluate whether their sample means differ more than we would
expect from natural variation. We call this variability the mean square between groups
(MSG), and it has an associated degrees of freedom, dfG = k− 1 when there are k groups.
The MSG can be thought of as a scaled variance formula for means. If the null hypothesis
is true, any variation in the sample means is due to chance and shouldn’t be too large.
Details of MSG calculations are provided in the footnote,23 however, we typically use
software for these computations.

The mean square between the groups is, on its own, quite useless in a hypothesis test.
We need a benchmark value for how much variability should be expected among the sample
means if the null hypothesis is true. To this end, we compute a pooled variance estimate,
often abbreviated as the mean square error (MSE), which has an associated degrees of
freedom value dfE = n − k. It is helpful to think of MSE as a measure of the variability
within the groups. Details of the computations of the MSE are provided in the footnote24

for interested readers.

22See, for example, www.stat.columbia.edu/∼cook/movabletype/archives/2007/05/the prosecutors.html.
23Let x̄ represent the mean of outcomes across all groups. Then the mean square between groups is

computed as

MSG =
1

dfG
SSG =

1

k − 1

k∑
i=1

ni (x̄i − x̄)2

where SSG is called the sum of squares between groups and ni is the sample size of group i.
24Let x̄ represent the mean of outcomes across all groups. Then the sum of squares total (SST ) is

computed as

SST =
n∑
i=1

(xi − x̄)2

where the sum is over all observations in the data set. Then we compute the sum of squared errors

http://www.stat.columbia.edu/~cook/movabletype/archives/2007/05/the_prosecutors.html
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When the null hypothesis is true, any differences among the sample means are only
due to chance, and the MSG and MSE should be about equal. As a test statistic for
ANOVA, we examine the fraction of MSG and MSE:

F =
MSG

MSE
(4.35)

The MSG represents a measure of the between-group variability, and MSE measures the
variability within each of the groups.

⊙
Guided Practice 4.36 For the baseball data, MSG = 0.00252 and MSE =
0.00127. Identify the degrees of freedom associated with MSG and MSE and verify
the F statistic is approximately 1.994.25

We can use the F statistic to evaluate the hypotheses in what is called an F test.
A p-value can be computed from the F statistic using an F distribution, which has two
associated parameters: df1 and df2. For the F statistic in ANOVA, df1 = dfG and df2 = dfE .
An F distribution with 3 and 323 degrees of freedom, corresponding to the F statistic for
the baseball hypothesis test, is shown in Figure 4.27.

F

0 1 2 3 4 5 6

Figure 4.27: An F distribution with df1 = 3 and df2 = 323.

The larger the observed variability in the sample means (MSG) relative to the within-
group observations (MSE), the larger F will be and the stronger the evidence against the
null hypothesis. Because larger values of F represent stronger evidence against the null
hypothesis, we use the upper tail of the distribution to compute a p-value.

(SSE) in one of two equivalent ways:

SSE = SST − SSG

= (n1 − 1)s21 + (n2 − 1)s22 + · · ·+ (nk − 1)s2k

where s2i is the sample variance (square of the standard deviation) of the residuals in group i. Then the

MSE is the standardized form of SSE: MSE = 1
dfE

SSE.
25There are k = 4 groups, so dfG = k − 1 = 3. There are n = n1 + n2 + n3 + n4 = 327 total

observations, so dfE = n − k = 323. Then the F statistic is computed as the ratio of MSG and MSE:
F = MSG

MSE
= 0.00252

0.00127
= 1.984 ≈ 1.994. (F = 1.994 was computed by using values for MSG and MSE that

were not rounded.)
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The F statistic and the F test
Analysis of variance (ANOVA) is used to test whether the mean outcome differs
across 2 or more groups. ANOVA uses a test statistic F , which represents a
standardized ratio of variability in the sample means relative to the variability
within the groups. If H0 is true and the model assumptions are satisfied, the
statistic F follows an F distribution with parameters df1 = k− 1 and df2 = n− k.
The upper tail of the F distribution is used to represent the p-value.

⊙
Guided Practice 4.37 The test statistic for the baseball example is F = 1.994.
Shade the area corresponding to the p-value in Figure 4.27. 26

 Example 4.38 The p-value corresponding to the shaded area in the solution of
Guided Practice 4.37 is equal to about 0.115. Does this provide strong evidence
against the null hypothesis?

The p-value is larger than 0.05, indicating the evidence is not strong enough to reject
the null hypothesis at a significance level of 0.05. That is, the data do not provide
strong evidence that the average on-base percentage varies by player’s primary field
position.

4.4.3 Reading an ANOVA table from software

The calculations required to perform an ANOVA by hand are tedious and prone to human
error. For these reasons, it is common to use statistical software to calculate the F statistic
and p-value.

An ANOVA can be summarized in a table very similar to that of a regression summary,
which we will see in Chapters 5 and 6. Table 4.28 shows an ANOVA summary to test
whether the mean of on-base percentage varies by player positions in the MLB. Many of
these values should look familiar; in particular, the F test statistic and p-value can be
retrieved from the last columns.

Df Sum Sq Mean Sq F value Pr(>F)
position 3 0.0076 0.0025 1.9943 0.1147
Residuals 323 0.4080 0.0013

spooled = 0.036 on df = 323

Table 4.28: ANOVA summary for testing whether the average on-base
percentage differs across player positions.

26

0 1 2 3 4 5 6
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4.4.4 Graphical diagnostics for an ANOVA analysis

There are three conditions we must check for an ANOVA analysis: all observations must
be independent, the data in each group must be nearly normal, and the variance within
each group must be approximately equal.

Independence. If the data are a simple random sample from less than 10% of the pop-
ulation, this condition is satisfied. For processes and experiments, carefully consider
whether the data may be independent (e.g. no pairing). For example, in the MLB
data, the data were not sampled. However, there are not obvious reasons why inde-
pendence would not hold for most or all observations.

Approximately normal. As with one- and two-sample testing for means, the normality
assumption is especially important when the sample size is quite small. The normal
probability plots for each group of the MLB data are shown in Figure 4.29; there
is some deviation from normality for infielders, but this isn’t a substantial concern
since there are about 150 observations in that group and the outliers are not extreme.
Sometimes in ANOVA there are so many groups or so few observations per group that
checking normality for each group isn’t reasonable. See the footnote27 for guidance
on how to handle such instances.

Constant variance. The last assumption is that the variance in the groups is about equal
from one group to the next. This assumption can be checked by examining a side-
by-side box plot of the outcomes across the groups, as in Figure 4.26 on page 187.
In this case, the variability is similar in the four groups but not identical. We see in
Table 4.25 on page 187 that the standard deviation varies a bit from one group to the
next. Whether these differences are from natural variation is unclear, so we should
report this uncertainty with the final results.

Caution: Diagnostics for an ANOVA analysis
Independence is always important to an ANOVA analysis. The normality condition
is very important when the sample sizes for each group are relatively small. The
constant variance condition is especially important when the sample sizes differ
between groups.

4.4.5 Multiple comparisons and controlling Type 1 Error rate

When we reject the null hypothesis in an ANOVA analysis, we might wonder, which of
these groups have different means? To answer this question, we compare the means of each
possible pair of groups. For instance, if there are three groups and there is strong evidence
that there are some differences in the group means, there are three comparisons to make:
group 1 to group 2, group 1 to group 3, and group 2 to group 3. These comparisons can
be accomplished using a two-sample t test, but we use a modified significance level and
a pooled estimate of the standard deviation across groups. Usually this pooled standard
deviation can be found in the ANOVA table, e.g. along the bottom of Table 4.28.

27First calculate the residuals of the baseball data, which are calculated by taking the observed values
and subtracting the corresponding group means. For example, an outfielder with OBP of 0.435 would have
a residual of 0.405− x̄OF = 0.071. Then to check the normality condition, create a normal probability plot
using all the residuals simultaneously.
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Figure 4.29: Normal probability plot of OBP for each field position.

 Example 4.39 Example 4.30 on page 185 discussed three statistics lectures, all
taught during the same semester. Table 4.30 shows summary statistics for these
three courses, and a side-by-side box plot of the data is shown in Figure 4.31. We
would like to conduct an ANOVA for these data. Do you see any deviations from the
three conditions for ANOVA?

In this case (like many others) it is difficult to check independence in a rigorous way.
Instead, the best we can do is use common sense to consider reasons the assumption
of independence may not hold. For instance, the independence assumption may not
be reasonable if there is a star teaching assistant that only half of the students may
access; such a scenario would divide a class into two subgroups. No such situations
were evident for these particular data, and we believe that independence is acceptable.

The distributions in the side-by-side box plot appear to be roughly symmetric and
show no noticeable outliers.

The box plots show approximately equal variability, which can be verified in Ta-
ble 4.30, supporting the constant variance assumption.
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Class i A B C
ni 58 55 51
x̄i 75.1 72.0 78.9
si 13.9 13.8 13.1

Table 4.30: Summary statistics for the first midterm scores in three different
lectures of the same course.
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Figure 4.31: Side-by-side box plot for the first midterm scores in three
different lectures of the same course.

⊙
Guided Practice 4.40 An ANOVA was conducted for the midterm data, and
summary results are shown in Table 4.32. What should we conclude?28

There is strong evidence that the different means in each of the three classes is not
simply due to chance. We might wonder, which of the classes are actually different? As
discussed in earlier chapters, a two-sample t test could be used to test for differences in each
possible pair of groups. However, one pitfall was discussed in Example 4.34 on page 187:
when we run so many tests, the Type 1 Error rate increases. This issue is resolved by using
a modified significance level.

28The p-value of the test is 0.0330, less than the default significance level of 0.05. Therefore, we reject
the null hypothesis and conclude that the difference in the average midterm scores are not due to chance.

Df Sum Sq Mean Sq F value Pr(>F)
lecture 2 1290.11 645.06 3.48 0.0330
Residuals 161 29810.13 185.16

spooled = 13.61 on df = 161

Table 4.32: ANOVA summary table for the midterm data.
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Multiple comparisons and the Bonferroni correction for α
The scenario of testing many pairs of groups is called multiple comparisons.
The Bonferroni correction suggests that a more stringent significance level is
more appropriate for these tests:

α∗ = α/K

where K is the number of comparisons being considered (formally or informally).

If there are k groups, then usually all possible pairs are compared and K = k(k−1)
2 .

 Example 4.41 In Guided Practice 4.40, you found strong evidence of differences in
the average midterm grades between the three lectures. Complete the three possible
pairwise comparisons using the Bonferroni correction and report any differences.

We use a modified significance level of α∗ = 0.05/3 = 0.0167. Additionally, we use
the pooled estimate of the standard deviation: spooled = 13.61 on df = 161, which is
provided in the ANOVA summary table.

Lecture A versus Lecture B: The estimated difference and standard error are, respec-
tively,

x̄A − x̄B = 75.1− 72 = 3.1 SE =

√
13.612

58
+

13.612

55
= 2.56

(See Section 4.3.5 on page 183 for additional details.) This results in a T score of 1.21
on df = 161 (we use the df associated with spooled). Statistical software was used to
precisely identify the two-tailed p-value since the modified significance of 0.0167 is
not found in the t table. The p-value (0.228) is larger than α∗ = 0.0167, so there is
not strong evidence of a difference in the means of lectures A and B.

Lecture A versus Lecture C: The estimated difference and standard error are 3.8 and
2.61, respectively. This results in a T score of 1.46 on df = 161 and a two-tailed
p-value of 0.1462. This p-value is larger than α∗, so there is not strong evidence of a
difference in the means of lectures A and C.

Lecture B versus Lecture C: The estimated difference and standard error are 6.9 and
2.65, respectively. This results in a T score of 2.60 on df = 161 and a two-tailed
p-value of 0.0102. This p-value is smaller than α∗. Here we find strong evidence of a
difference in the means of lectures B and C.

We might summarize the findings of the analysis from Example 4.41 using the following
notation:

µA
?
= µB µA

?
= µC µB 6= µC

The midterm mean in lecture A is not statistically distinguishable from those of lectures
B or C. However, there is strong evidence that lectures B and C are different. In the first
two pairwise comparisons, we did not have sufficient evidence to reject the null hypothesis.
Recall that failing to reject H0 does not imply H0 is true.
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Caution: Sometimes an ANOVA will reject the null but no groups will
have statistically significant differences
It is possible to reject the null hypothesis using ANOVA and then to not subse-
quently identify differences in the pairwise comparisons. However, this does not
invalidate the ANOVA conclusion. It only means we have not been able to success-
fully identify which groups differ in their means.

The ANOVA procedure examines the big picture: it considers all groups simultane-
ously to decipher whether there is evidence that some difference exists. Even if the test
indicates that there is strong evidence of differences in group means, identifying with high
confidence a specific difference as statistically significant is more difficult.

Consider the following analogy: we observe a Wall Street firm that makes large quanti-
ties of money based on predicting mergers. Mergers are generally difficult to predict, and if
the prediction success rate is extremely high, that may be considered sufficiently strong ev-
idence to warrant investigation by the Securities and Exchange Commission (SEC). While
the SEC may be quite certain that there is insider trading taking place at the firm, the
evidence against any single trader may not be very strong. It is only when the SEC consid-
ers all the data that they identify the pattern. This is effectively the strategy of ANOVA:
stand back and consider all the groups simultaneously.

4.5 Bootstrapping to study the standard deviation

We analyzed textbook pricing data in Section 4.2 and found that prices on Amazon were
statistically significantly cheaper on average. We might also want to better understand the
variability of the price difference from one book to another, which we quantified using the
standard deviation: s = $14.26. The sample standard deviation is a point estimate for the
population standard deviation. Just as we care about the precision of a sample mean, we
may care about the precise of the sample standard deviation.

4.5.1 Bootstrap samples and distributions

The theory required to quantify the uncertainty of the sample standard deviation is com-
plex. In an ideal world, we would sample data from the population again and recompute
the standard deviation with this new sample. Then we could do it again. And again. And
so on until we get enough standard deviation estimates that we have a good sense of the
precision of our original estimate. This is an ideal world where sampling data is free or
extremely cheap. That is rarely the case, which poses a challenge to this “resample from
the population” approach.

However, we can sample from the sample. In the textbook pricing example, there are
73 price differences. This sample can serve as a proxy for the population: we sample from
this data set to get a sense for what it would be like if we took new samples.
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A bootstrap sample is a sample of the original sample. In the case of the textbook
data, we proceed as follows:

1. Randomly sample one observation from the 73 price differences.

2. Randomly sample a second observation from the 73 price differences. There is a
1-in-73 chance that this second observation will be the same one sampled in the first
step.

...

73. Randomly sample a 73rd observation from the 73 price differences.

This type of sampling is called sampling with replacement. Table 4.33 shows a boot-
strap sample for the textbook pricing example. Some of the values, such as 16.80, are
duplicated since occasionally we sample the same observation multiple times.

16.80 6.63 5.39 6.39 14.05 6.63 -0.25 12.45 -0.22 9.45 9.45
11.70 39.08 4.80 28.72 9.45 -0.25 -3.88 2.82 45.34 28.72 16.62
38.35 4.74 44.40 3.74 1.75 2.84 30.25 3.35 6.63 30.50 0.00
4.96 6.39 9.48 16.80 66.00 44.40 -0.25 -2.55 17.98 2.82
29.29 9.22 11.70 9.31 4.80 13.63 9.45 38.23 4.96 19.69
14.26 12.45 5.39 -0.28 8.23 0.42 2.82 4.78 7.01 4.64
9.12 9.31 9.12 11.70 27.15 28.72 30.71 2.84 -9.53 14.05

Table 4.33: A bootstrap sample of the textbook price differences, which
represents a sample of 73 values from the original 73 observations, where
we are sampling with replacement. In sampling with replacement, it is
possible for a value to be sampled multiple times. For example, 16.80 was
sampled twice in this bootstrap sample.

A bootstrap sample behaves similarly to how an actual sample would behave, and we
compute the point estimate of interest. In the textbook price example, we compute the
standard deviation of the bootstrap sample: $13.98.

4.5.2 Inference using the bootstrap

One bootstrap sample is not enough to understand the uncertainty of the standard devia-
tion, so we need to collect another bootstrap sample and compute the standard deviation:
$16.21. And another: $14.07. And so on. Using a computer, we took 10,000 boot-
strap samples and computed the standard deviation for each, and these are summarized
in Figure 4.34. This is called the bootstrap distribution of the standard deviation for
the textbook price differences. To make use of this distribution, we make an important
assumption: the bootstrap distribution shown in Figure 4.34 is similar to the sampling dis-
tribution of the standard deviation. This assumption is reasonable when doing an informal
exploration of the uncertainty of an estimate, and under certain conditions, we can rely on
it for more formal inference methods.

 Example 4.42 Describe the bootstrap distribution for the standard deviation shown
in Figure 4.34.

The distribution is symmetric, bell-shaped, and centered near $14.26, which is the
point estimate from the original data. The standard deviation of the bootstrap distri-
bution is $1.60, and most observations in this distribution lie between $11 and $17.
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Figure 4.34: Bootstrap distribution for the standard deviation of textbook
price differences. The distribution is approximately centered at the original
sample’s standard deviation, $14.26.

In this example, the bootstrap distribution’s standard deviation, $1.60, quantifies the
uncertainty of the point estimate. This is an estimate of the standard error based on the
bootstrap. We might be tempted to use it for a 95% confidence interval, but first we
must perform some due diligence. As with every statistical method, we must check certain
conditions before performing formal inference using the bootstrap.

Bootstrapping for the Standard Deviation
The bootstrap distribution for the standard deviation will be a good approximation
of the sampling distribution for the standard deviation when

1. observations in the original sample are independent,

2. the original sample size is at least 30, and

3. the bootstrap distribution is nearly normal.

We’re already familiar with checking independence of observations, which we previ-
ously checked for this data set, and the second condition is easy to check. The last condition
can be checked by examining the bootstrap distribution using a normal probability plot,
as shown in Figure 4.35. In this example, we see a very straight line, which indicates
the bootstrap distribution is nearly normal, and we can move forward with constructing a
confidence interval.

As with many other point estimates, we will use the familiar formula

point estimate± t?df × SE

In the textbook example, using df = 73− 1 = 72 leads to t?72 = 1.99 for a 95% confidence
level. For bootstrapping, the standard error is computed as the standard deviation of the
bootstrap distribution.
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Figure 4.35: Normal probability plot for the bootstrap distribution.

 Example 4.43 Compute the 95% confidence interval for the standard deviation of
the textbook price difference.

We use the general formula for a 95% confidence interval with the t distribution:

point estimate± t?df × SE
14.26± 1.99× 1.60

($11.08,$17.44)

We are 95% confident that the standard deviation of the textbook price differences
is between $11.08 and $17.44.

Had we wanted to conduct a hypothesis test, we could have used the point estimate
and standard error for a t test as we have in previous sections.

Bootstrap for other parameters
The bootstrap may be used with any parameters using the same conditions as
were provided for the standard deviation. However, in other situations, it may be
more important to examine the validity of the third condition: that the bootstrap
distribution is nearly normal.
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4.5.3 Frequently asked questions

There are more types of bootstrap techniques, right? Yes! There are many excel-
lent bootstrap techniques. We have only chosen to present one bootstrap technique
that could be explained in a single section and is also reasonably reliable.

Can we use the bootstrap for the mean or difference of means? Technically, yes.
However, the methods introduced earlier tend to be more reliable than this particular
bootstrapping method and other simple bootstrapping techniques. See the following
page for details on an investigation into the accuracy of several bootstrapping methods
as well as the t distribution method introduced earlier in this chapter:

www.openintro.org/stat/bootstrap

I’ve heard a technique called the percentile bootstrap that is very robust.
It is a commonly held belief that the percentile bootstrap is a robust bootstrap
method. That is false. The percentile method is one of the least reliable bootstrap
methods. Instead, use the method described in this section, which is more reliable,
or learn about more advanced techniques.

http://www.openintro.org/stat/bootstrap
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4.6 Exercises

4.6.1 One-sample means with the t distribution

4.1 Identify the critical t. An independent random sample is selected from an approximately
normal population with unknown standard deviation. Find the degrees of freedom and the critical
t value (t?) for the given sample size and confidence level.

(a) n = 6, CL = 90%

(b) n = 21, CL = 98%

(c) n = 29, CL = 95%

(d) n = 12, CL = 99%

4.2 Working backwards, Part I. A 90% confidence interval for a population mean is (65,77).
The population distribution is approximately normal and the population standard deviation is un-
known. This confidence interval is based on a simple random sample of 25 observations. Calculate
the sample mean, the margin of error, and the sample standard deviation.

4.3 Working backwards, Part II. A 95% confidence interval for a population mean, µ, is
given as (18.985, 21.015). This confidence interval is based on a simple random sample of 36
observations. Calculate the sample mean and standard deviation. Assume that all conditions
necessary for inference are satisfied. Use the t distribution in any calculations.

4.4 Find the p-value. An independent random sample is selected from an approximately normal
population with an unknown standard deviation. Find the p-value for the given set of hypotheses
and T test statistic. Also determine if the null hypothesis would be rejected at α = 0.05.

(a) HA : µ > µ0, n = 11, T = 1.91

(b) HA : µ < µ0, n = 17, T = −3.45

(c) HA : µ 6= µ0, n = 7, T = 0.83

(d) HA : µ > µ0, n = 28, T = 2.13

4.5 Sleep habits of New Yorkers. New York is known as “the city that never sleeps”.
A random sample of 25 New Yorkers were asked how much sleep they get per night. Statistical
summaries of these data are shown below. Do these data provide strong evidence that New Yorkers
sleep more or less than 8 hours a night on average?

n x̄ s min max

25 7.73 0.77 6.17 9.78

(a) Write the hypotheses in symbols and in words.

(b) Check conditions, then calculate the test statistic, T , and the associated degrees of freedom.

(c) Find and interpret the p-value in this context. Drawing a picture may be helpful.

(d) What is the conclusion of the hypothesis test?

(e) If you were to construct a 95% confidence interval that corresponded to this hypothesis test,
would you expect 8 hours to be in the interval?
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4.6 Fuel efficiency of Prius. Fueleconomy.gov, the official US government source for fuel econ-
omy information, allows users to share gas mileage information on their vehicles. The histogram
below shows the distribution of gas mileage in miles per gallon (MPG) from 14 users who drive a
2012 Toyota Prius. The sample mean is 53.3 MPG and the standard deviation is 5.2 MPG. Note
that these data are user estimates and since the source data cannot be verified, the accuracy of
these estimates are not guaranteed.29

Mileage (in MPG)
40 45 50 55 60 65

0

2

4

6

(a) We would like to use these data to evaluate the average gas mileage of all 2012 Prius drivers.
Do you think this is reasonable? Why or why not?

(b) The EPA claims that a 2012 Prius gets 50 MPG (city and highway mileage combined). Do
these data provide strong evidence against this estimate for drivers who participate on fuele-
conomy.gov? Note any assumptions you must make as you proceed with the test.

(c) Calculate a 95% confidence interval for the average gas mileage of a 2012 Prius by drivers who
participate on fueleconomy.gov.

4.7 Find the mean. You are given the following hypotheses:

H0 : µ = 60

HA : µ < 60

We know that the sample standard deviation is 8 and the sample size is 20. For what sample
mean would the p-value be equal to 0.05? Assume that all conditions necessary for inference are
satisfied.

4.8 t? vs. z?. For a given confidence level, t?df is larger than z?. Explain how t∗df being slightly
larger than z∗ affects the width of the confidence interval.

29Fuelecomy.gov, Shared MPG Estimates: Toyota Prius 2012.

http://www.fueleconomy.gov/mpg/MPG.do?action=mpgData&vehicleID=31767&browser=true&details=on
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4.6.2 Paired data

4.9 Climate change, Part I. Is there strong evidence of climate change? Let’s consider a small
scale example, comparing how temperatures have changed in the US from 1968 to 2008. The daily
high temperature reading on January 1 was collected in 1968 and 2008 for 51 randomly selected
locations in the continental US. Then the difference between the two readings (temperature in
2008 - temperature in 1968) was calculated for each of the 51 different locations. The average of
these 51 values was 1.1 degrees with a standard deviation of 4.9 degrees.

(a) Is there a relationship between the observations collected in 1968 and 2008? Or are the
observations in the two groups independent? Explain.

(b) Write hypotheses for this research in symbols and in words.

(c) Check the conditions required to complete this test.

(d) Calculate the test statistic and find the p-value.

(e) What do you conclude? Interpret your conclusion in context.

(f) What type of error might we have made? Explain in context what the error means.

(g) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the temperature measurements from 1968 and 2008 to include 0?
Explain your reasoning.

4.10 High School and Beyond, Part I. The National Center of Education Statistics conducted
a survey of high school seniors, collecting test data on reading, writing, and several other subjects.
Here we examine a simple random sample of 200 students from this survey. Side-by-side box plots
of reading and writing scores as well as a histogram of the differences in scores are shown below.

y

sc
or

es

read write

20

40

60

80

Differences in scores (read − write)
−20 −10 0 10 20

0

10

20

30

40

(a) Is there a clear difference in the average reading and writing scores?

(b) Are the reading and writing scores of each student independent of each other?

(c) Create hypotheses appropriate for the following research question: is there an evident difference
in the average scores of students in the reading and writing exam?

(d) Check the conditions required to complete this test.

(e) The average observed difference in scores is x̄read−write = −0.545, and the standard deviation
of the differences is 8.887 points. Do these data provide convincing evidence of a difference
between the average scores on the two exams?

(f) What type of error might we have made? Explain what the error means in the context of the
application.

(g) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the reading and writing scores to include 0? Explain your reasoning.
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4.11 Climate change, Part II. We considered the differences between the temperature readings
in January 1 of 1968 and 2008 at 51 locations in the continental US in Exercise 4.9. The mean
and standard deviation of the reported differences are 1.1 degrees and 4.9 degrees.

(a) Calculate a 95% confidence interval for the average difference between the temperature mea-
surements between 1968 and 2008.

(b) Interpret this interval in context.

(c) Does the confidence interval provide convincing evidence that the temperature was different
in 2008 than in 1968 in the continental US? Explain.

4.12 High school and beyond, Part II. We considered the differences between the reading and
writing scores of a random sample of 200 students who took the High School and Beyond Survey
in Exercise 4.11. The mean and standard deviation of the differences are x̄read−write = −0.545
and 8.887 points.

(a) Calculate a 95% confidence interval for the average difference between the reading and writing
scores of all students.

(b) Interpret this interval in context.

(c) Does the confidence interval provide convincing evidence that there is a real difference in the
average scores? Explain.

4.13 Gifted children. Researchers collected a simple random sample of 36 children who had
been identified as gifted in a large city. The following histograms show the distributions of the IQ
scores of mothers and fathers of these children. Also provided are some sample statistics.30
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Mean 118.2 114.8 3.4
SD 6.5 3.5 7.5

n 36 36 36

(a) Are the IQs of mothers and the IQs of fathers in this data set related? Explain.

(b) Conduct a hypothesis test to evaluate if the scores are equal on average. Make sure to clearly
state your hypotheses, check the relevant conditions, and state your conclusion in the context
of the data.

4.14 Paired or not? In each of the following scenarios, determine if the data are paired.

(a) We would like to know if Intel’s stock and Southwest Airlines’ stock have similar rates of
return. To find out, we take a random sample of 50 days for Intel’s stock and another random
sample of 50 days for Southwest’s stock.

(b) We randomly sample 50 items from Target stores and note the price for each. Then we visit
Walmart and collect the price for each of those same 50 items.

(c) A school board would like to determine whether there is a difference in average SAT scores
for students at one high school versus another high school in the district. To check, they take
a simple random sample of 100 students from each high school.

30F.A. Graybill and H.K. Iyer. Regression Analysis: Concepts and Applications. Duxbury Press, 1994,
pp. 511–516.
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4.6.3 Difference of two means

4.15 Math scores of 13 year olds, Part I. The National Assessment of Educational Progress
tested a simple random sample of 1,000 thirteen year old students in both 2004 and 2008 (two
separate simple random samples). The average and standard deviation in 2004 were 257 and 39,
respectively. In 2008, the average and standard deviation were 260 and 38, respectively. Calculate
a 90% confidence interval for the change in average scores from 2004 to 2008, and interpret this
interval in the context of the application. (Reminder: check conditions.)31

4.16 Work hours and education, Part I. The General Social Survey collects data on demo-
graphics, education, and work, among many other characteristics of US residents. The histograms
below display the distributions of hours worked per week for two education groups: those with
and without a college degree.32 Suppose we want to estimate the average difference between the
number of hours worked per week by all Americans with a college degree and those without a
college degree. Summary information for each group is shown in the tables.
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Mean 41.8 hrs
SD 15.1 hrs
n 505
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Mean 39.4 hrs
SD 15.1 hrs
n 667

(a) What is the parameter of interest, and what is the point estimate?

(b) Are conditions satisfied for estimating this difference using a confidence interval?

(c) Create a 95% confidence interval for the difference in number of hours worked between the
two groups, and interpret the interval in context.

(d) Can you think of any real world justification for your results? (Note: There isn’t a single
correct answer to this question.)

4.17 Math scores of 13 year olds, Part II. Exercise 4.15 provides data on the average math
scores from tests conducted by the National Assessment of Educational Progress in 2004 and 2008.
Two separate simple random samples were taken in each of these years. The average and standard
deviation in 2004 were 257 and 39, respectively. In 2008, the average and standard deviation were
260 and 38, respectively.

(a) Do these data provide strong evidence that the average math score for 13 year old students
has changed from 2004 to 2008? Use a 10% significance level.

(b) It is possible that your conclusion in part (a) is incorrect. What type of error is possible for
this conclusion? Explain.

(c) Based on your hypothesis test, would you expect a 90% confidence interval to contain the null
value? Explain.

31National Center for Education Statistics, NAEP Data Explorer.
32National Opinion Research Center, General Social Survey, 2010.

http://nces.ed.gov/nationsreportcard/about/naeptools.asp
http://www3.norc.org/gss+website
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4.18 Work hours and education, Part II. The General Social Survey described in Exer-
cise 4.16 included random samples from two groups: US residents with a college degree and US
residents without a college degree. For the 505 sampled US residents with a college degree, the
average number of hours worked each week was 41.8 hours with a standard deviation of 15.1 hours.
For those 667 without a degree, the mean was 39.4 hours with a standard deviation of 15.1 hours.
Conduct a hypothesis test to check for a difference in the average number of hours worked for the
two groups.

4.19 Does the Paleo diet work? The Paleo diet allows only for foods that humans typically
consumed over the last 2.5 million years, excluding those agriculture-type foods that arose during
the last 10,000 years or so. Researchers randomly divided 500 volunteers into two equal-sized
groups. One group spent 6 months on the Paleo diet. The other group received a pamphlet about
controlling portion sizes. Randomized treatment assignment was performed, and at the beginning
of the study, the average difference in weights between the two groups was about 0. After the
study, the Paleo group had lost on average 7 pounds with a standard deviation of 20 pounds while
the control group had lost on average 5 pounds with a standard deviation of 12 pounds.

(a) The 95% confidence interval for the difference between the two population parameters (Paleo
- control) is given as (-0.891, 4.891). Interpret this interval in the context of the data.

(b) Based on this confidence interval, do the data provide convincing evidence that the Paleo diet
is more effective for weight loss than the pamphlet (control)? Explain your reasoning.

(c) Without explicitly performing the hypothesis test, do you think that if the Paleo group had
lost 8 instead of 7 pounds on average, and everything else was the same, the results would
then indicate a significant difference between the treatment and control groups? Explain your
reasoning.

4.20 Weight gain during pregnancy. In 2004, the state of North Carolina released to the
public a large data set containing information on births recorded in this state. This data set
has been of interest to medical researchers who are studying the relationship between habits and
practices of expectant mothers and the birth of their children. The following histograms show the
distributions of weight gain during pregnancy by 867 younger moms (less than 35 years old) and
133 mature moms (35 years old and over) who have been randomly sampled from this large data
set. The average weight gain of younger moms is 30.56 pounds, with a standard deviation of 14.35
pounds, and the average weight gain of mature moms is 28.79 pounds, with a standard deviation
of 13.48 pounds. Calculate a 95% confidence interval for the difference between the average weight
gain of younger and mature moms. Also comment on whether or not this interval provides strong
evidence that there is a significant difference between the two population means.
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4.21 Body fat in women and men. The third National Health and Nutrition Examination
Survey collected body fat percentage (BF) data from 13,601 subjects whose ages are 20 to 80. A
summary table for these data is given below. Note that BF is given as mean ± standard error.
Construct a 95% confidence interval for the difference in average body fat percentages between men
and women, and explain the meaning of this interval. Tip: the standard error can be calculated
as SE =

√
SE2

M + SE2
W .33

Gender n BF (%)

Men 6,580 23.9 ± 0.07
Women 7,021 35.0 ± 0.09

4.22 Child care hours, Part I. The China Health and Nutrition Survey aims to examine the
effects of the health, nutrition, and family planning policies and programs implemented by national
and local governments. One of the variables collected on the survey is the number of hours parents
spend taking care of children in their household under age 6 (feeding, bathing, dressing, holding, or
watching them). In 2006, 487 females and 312 males were surveyed for this question. On average,
females reported spending 31 hours with a standard deviation of 31 hours, and males reported
spending 16 hours with a standard deviation of 21 hours. Calculate a 95% confidence interval
for the difference between the average number of hours Chinese males and females spend taking
care of their children under age 6. Also comment on whether this interval suggests a significant
difference between the two population parameters. You may assume that conditions for inference
are satisfied.34

4.23 Cleveland vs. Sacramento. Average income varies from one region of the country to
another, and it often reflects both lifestyles and regional living expenses. Suppose a new graduate
is considering a job in two locations, Cleveland, OH and Sacramento, CA, and he wants to see
whether the average income in one of these cities is higher than the other. He would like to conduct
a t test based on two small samples from the 2000 Census, but he first must consider whether the
conditions are met to implement the test. Below are histograms for each city. Should he move
forward with the t test? Explain your reasoning.

0 45000 90000 135000 180000

0

5

10

Cleveland, OH

Total personal income

0 45000 90000 135000 180000

0

5

10

Sacramento, CA

Cleveland, OH

Mean $ 35,749
SD $ 39,421
n 21

Sacramento, CA

Mean $ 35,500
SD $ 41,512
n 17

33A Romero-Corral et al. “Accuracy of body mass index in diagnosing obesity in the adult general
population”. In: International Journal of Obesity 32.6 (2008), pp. 959–966.

34UNC Carolina Population Center, China Health and Nutrition Survey, 2006.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877506/pdf/nihms152315.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877506/pdf/nihms152315.pdf
http://www.cpc.unc.edu/projects/china
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4.24 Oscar winners. The first Oscar awards for best actor and best actress were given out in
1929. The histograms below show the age distribution for all of the best actor and best actress
winners from 1929 to 2012. Summary statistics for these distributions are also provided. Is a t test
appropriate for evaluating whether the difference in the average ages of best actors and actresses
might be due to chance? Explain your reasoning.35
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35Oscar winners from 1929 – 2012, data up to 2009 from the Journal of Statistics Education data archive
and more current data from wikipedia.org.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.wikipedia.org/
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4.25 Friday the 13th, Part I. In the early 1990’s, researchers in the UK collected data on
traffic flow, number of shoppers, and traffic accident related emergency room admissions on Friday
the 13th and the previous Friday, Friday the 6th. The histograms below show the distribution of
number of cars passing by a specific intersection on Friday the 6th and Friday the 13th for many
such date pairs. Also given are some sample statistics, where the difference is the number of cars
on the 6th minus the number of cars on the 13th.36
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x̄ 128,385 126,550 1,835
s 7,259 7,664 1,176
n 10 10 10

(a) Are there any underlying structures in these data that should be considered in an analysis?
Explain.

(b) What are the hypotheses for evaluating whether the number of people out on Friday the 6th

is different than the number out on Friday the 13th?

(c) Check conditions to carry out the hypothesis test from part (b).

(d) Calculate the test statistic and the p-value.

(e) What is the conclusion of the hypothesis test?

(f) Interpret the p-value in this context.

(g) What type of error might have been made in the conclusion of your test? Explain.

4.26 Diamonds, Part I. Prices of diamonds are determined by what is known as the 4 Cs: cut,
clarity, color, and carat weight. The prices of diamonds go up as the carat weight increases, but
the increase is not smooth. For example, the difference between the size of a 0.99 carat diamond
and a 1 carat diamond is undetectable to the naked human eye, but the price of a 1 carat diamond
tends to be much higher than the price of a 0.99 diamond. In this question we use two random
samples of diamonds, 0.99 carats and 1 carat, each sample of size 23, and compare the average
prices of the diamonds. In order to be able to compare equivalent units, we first divide the price
for each diamond by 100 times its weight in carats. That is, for a 0.99 carat diamond, we divide
the price by 99. For a 1 carat diamond, we divide the price by 100. The distributions and some
sample statistics are shown below.37

Conduct a hypothesis test to evaluate if there is a differ-
ence between the average standardized prices of 0.99 and
1 carat diamonds. Make sure to state your hypotheses
clearly, check relevant conditions, and interpret your re-
sults in context of the data.
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36T.J. Scanlon et al. “Is Friday the 13th Bad For Your Health?” In: BMJ 307 (1993), pp. 1584–1586.
37H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1697765/pdf/bmj00052-0013.pdf
http://had.co.nz/ggplot2/book
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4.27 Friday the 13th, Part II. The Friday the 13th study reported in Exercise 4.25 also
provides data on traffic accident related emergency room admissions. The distributions of these
counts from Friday the 6th and Friday the 13th are shown below for six such paired dates along
with summary statistics. You may assume that conditions for inference are met.
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(a) Conduct a hypothesis test to evaluate if there is a difference between the average numbers of
traffic accident related emergency room admissions between Friday the 6th and Friday the 13th.

(b) Calculate a 95% confidence interval for the difference between the average numbers of traffic
accident related emergency room admissions between Friday the 6th and Friday the 13th.

(c) The conclusion of the original study states, “Friday 13th is unlucky for some. The risk of
hospital admission as a result of a transport accident may be increased by as much as 52%.
Staying at home is recommended.” Do you agree with this statement? Explain your reasoning.

4.28 Diamonds, Part II. In Exercise 4.26, we discussed diamond prices (standardized by
weight) for diamonds with weights 0.99 carats and 1 carat. See the table for summary statistics,
and then construct a 95% confidence interval for the average difference between the standardized
prices of 0.99 and 1 carat diamonds. You may assume the conditions for inference are met.

0.99 carats 1 carat

Mean $ 44.51 $ 56.81
SD $ 13.32 $ 16.13
n 23 23
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4.29 Chicken diet and weight, Part I. Chicken farming is a multi-billion dollar industry,
and any methods that increase the growth rate of young chicks can reduce consumer costs while
increasing company profits, possibly by millions of dollars. An experiment was conducted to
measure and compare the effectiveness of various feed supplements on the growth rate of chickens.
Newly hatched chicks were randomly allocated into six groups, and each group was given a different
feed supplement. Below are some summary statistics from this data set along with box plots
showing the distribution of weights by feed type.38
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casein 323.58 64.43 12
horsebean 160.20 38.63 10
linseed 218.75 52.24 12
meatmeal 276.91 64.90 11
soybean 246.43 54.13 14
sunflower 328.92 48.84 12

(a) Describe the distributions of weights of chickens that were fed linseed and horsebean.

(b) Do these data provide strong evidence that the average weights of chickens that were fed
linseed and horsebean are different? Use a 5% significance level.

(c) What type of error might we have committed? Explain.

(d) Would your conclusion change if we used α = 0.01?

4.30 Fuel efficiency of manual and automatic cars, Part I. Each year the US Environ-
mental Protection Agency (EPA) releases fuel economy data on cars manufactured in that year.
Below are summary statistics on fuel efficiency (in miles/gallon) from random samples of cars with
manual and automatic transmissions manufactured in 2012. Do these data provide strong evidence
of a difference between the average fuel efficiency of cars with manual and automatic transmissions
in terms of their average city mileage? Assume that conditions for inference are satisfied.39

City MPG

Automatic Manual
Mean 16.12 19.85
SD 3.58 4.51
n 26 26

City MPG

automatic manual

15

25

35

4.31 Chicken diet and weight, Part II. Casein is a common weight gain supplement for
humans. Does it have an effect on chickens? Using data provided in Exercise 4.29, test the
hypothesis that the average weight of chickens that were fed casein is different than the average
weight of chickens that were fed soybean. If your hypothesis test yields a statistically significant
result, discuss whether or not the higher average weight of chickens can be attributed to the casein
diet. Assume that conditions for inference are satisfied.

38Chicken Weights by Feed Type, from the datasets package in R..
39U.S. Department of Energy, Fuel Economy Data, 2012 Datafile.

http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/chickwts.html
http://www.fueleconomy.gov/feg/download.shtml
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4.32 Fuel efficiency of manual and automatic cars, Part II. The table provides summary
statistics on highway fuel economy of cars manufactured in 2012 (from Exercise 4.30). Use these
statistics to calculate a 98% confidence interval for the difference between average highway mileage
of manual and automatic cars, and interpret this interval in the context of the data.40

Hwy MPG

Automatic Manual
Mean 22.92 27.88
SD 5.29 5.01
n 26 26

Hwy MPG

automatic manual

15

25

35

4.33 Gaming and distracted eating, Part I. A group of researchers are interested in the
possible effects of distracting stimuli during eating, such as an increase or decrease in the amount
of food consumption. To test this hypothesis, they monitored food intake for a group of 44 patients
who were randomized into two equal groups. The treatment group ate lunch while playing solitaire,
and the control group ate lunch without any added distractions. Patients in the treatment group
ate 52.1 grams of biscuits, with a standard deviation of 45.1 grams, and patients in the control
group ate 27.1 grams of biscuits, with a standard deviation of 26.4 grams. Do these data provide
convincing evidence that the average food intake (measured in amount of biscuits consumed)
is different for the patients in the treatment group? Assume that conditions for inference are
satisfied.41

4.34 Gaming and distracted eating, Part II. The researchers from Exercise 4.33 also in-
vestigated the effects of being distracted by a game on how much people eat. The 22 patients in
the treatment group who ate their lunch while playing solitaire were asked to do a serial-order
recall of the food lunch items they ate. The average number of items recalled by the patients in
this group was 4.9, with a standard deviation of 1.8. The average number of items recalled by the
patients in the control group (no distraction) was 6.1, with a standard deviation of 1.8. Do these
data provide strong evidence that the average number of food items recalled by the patients in the
treatment and control groups are different?

40U.S. Department of Energy, Fuel Economy Data, 2012 Datafile.
41R.E. Oldham-Cooper et al. “Playing a computer game during lunch affects fullness, memory for lunch,

and later snack intake”. In: The American Journal of Clinical Nutrition 93.2 (2011), p. 308.

http://www.fueleconomy.gov/feg/download.shtml
http://www.ajcn.org/content/93/2/308.full.pdf
http://www.ajcn.org/content/93/2/308.full.pdf
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4.35 Prison isolation experiment, Part I. Subjects from Central Prison in Raleigh, NC,
volunteered for an experiment involving an “isolation” experience. The goal of the experiment
was to find a treatment that reduces subjects’ psychopathic deviant T scores. This score measures
a person’s need for control or their rebellion against control, and it is part of a commonly used
mental health test called the Minnesota Multiphasic Personality Inventory (MMPI) test. The
experiment had three treatment groups:

(1) Four hours of sensory restriction plus a 15 minute “therapeutic” tape advising that professional
help is available.

(2) Four hours of sensory restriction plus a 15 minute “emotionally neutral” tape on training
hunting dogs.

(3) Four hours of sensory restriction but no taped message.

Forty-two subjects were randomly assigned to these treatment groups, and an MMPI test was
administered before and after the treatment. Distributions of the differences between pre and
post treatment scores (pre - post) are shown below, along with some sample statistics. Use this
information to independently test the effectiveness of each treatment. Make sure to clearly state
your hypotheses, check conditions, and interpret results in the context of the data.42
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Mean 6.21 2.86 -3.21
SD 12.3 7.94 8.57
n 14 14 14

4.36 True or false, Part I. Determine if the following statements are true or false, and explain
your reasoning for statements you identify as false.

(a) When comparing means of two samples where n1 = 20 and n2 = 40, we can use the normal
model for the difference in means since n2 ≥ 30.

(b) As the degrees of freedom increases, the T distribution approaches normality.

(c) We use a pooled standard error for calculating the standard error of the difference between
means when sample sizes of groups are equal to each other.

42Prison isolation experiment.

http://stat.duke.edu/resources/datasets/prison-isolation
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4.6.4 Comparing many means with ANOVA

4.37 Chicken diet and weight, Part III. In Exercises 4.29 and 4.31 we compared the effects
of two types of feed at a time. A better analysis would first consider all feed types at once: casein,
horsebean, linseed, meat meal, soybean, and sunflower. The ANOVA output below can be used
to test for differences between the average weights of chicks on different diets.

Df Sum Sq Mean Sq F value Pr(>F)

feed 5 231,129.16 46,225.83 15.36 0.0000
Residuals 65 195,556.02 3,008.55

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
weight of chicks varies across some (or all) groups. Make sure to check relevant conditions. Figures
and summary statistics are shown below.
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Mean SD n
casein 323.58 64.43 12
horsebean 160.20 38.63 10
linseed 218.75 52.24 12
meatmeal 276.91 64.90 11
soybean 246.43 54.13 14
sunflower 328.92 48.84 12

4.38 Student performance across discussion sections. A professor who teaches a large
introductory statistics class (197 students) with eight discussion sections would like to test if
student performance differs by discussion section, where each discussion section has a different
teaching assistant. The summary table below shows the average final exam score for each discussion
section as well as the standard deviation of scores and the number of students in each section.

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6 Sec 7 Sec 8

ni 33 19 10 29 33 10 32 31
x̄i 92.94 91.11 91.80 92.45 89.30 88.30 90.12 93.35
si 4.21 5.58 3.43 5.92 9.32 7.27 6.93 4.57

The ANOVA output below can be used to test for differences between the average scores from the
different discussion sections.

Df Sum Sq Mean Sq F value Pr(>F)

section 7 525.01 75.00 1.87 0.0767
Residuals 189 7584.11 40.13

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
score varies across some (or all) groups. Check conditions and describe any assumptions you must
make to proceed with the test.
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4.39 Coffee, depression, and physical activity. Caffeine is the world’s most widely used
stimulant, with approximately 80% consumed in the form of coffee. Participants in a study inves-
tigating the relationship between coffee consumption and exercise were asked to report the number
of hours they spent per week on moderate (e.g., brisk walking) and vigorous (e.g., strenuous sports
and jogging) exercise. Based on these data the researchers estimated the total hours of metabolic
equivalent tasks (MET) per week, a value always greater than 0. The table below gives summary
statistics of MET for women in this study based on the amount of coffee consumed.43

Caffeinated coffee consumption
≤ 1 cup/week 2-6 cups/week 1 cup/day 2-3 cups/day ≥ 4 cups/day Total

Mean 18.7 19.6 19.3 18.9 17.5
SD 21.1 25.5 22.5 22.0 22.0
n 12,215 6,617 17,234 12,290 2,383 50,739

(a) Write the hypotheses for evaluating if the average physical activity level varies among the
different levels of coffee consumption.

(b) Check conditions and describe any assumptions you must make to proceed with the test.

(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq Mean Sq F value Pr(>F)

coffee XXXXX XXXXX XXXXX XXXXX 0.0003

Residuals XXXXX 25,564,819 XXXXX

Total XXXXX 25,575,327

(d) What is the conclusion of the test?

43M. Lucas et al. “Coffee, caffeine, and risk of depression among women”. In: Archives of internal
medicine 171.17 (2011), p. 1571.

http://archinte.jamanetwork.com/data/Journals/INTEMED/22528/ioi15048_1571_1578.pdf
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4.40 Work hours and education, Part III. In Exercises 4.16 and 4.18 you worked with data
from the General Social Survey in order to compare the average number of hours worked per week
by US residents with and without a college degree. However, this analysis didn’t take advantage of
the original data which contained more accurate information on educational attainment (less than
high school, high school, junior college, Bachelor’s, and graduate school). Using ANOVA, we can
consider educational attainment levels for all 1,172 respondents at once instead of re-categorizing
them into two groups. Below are the distributions of hours worked by educational attainment and
relevant summary statistics that will be helpful in carrying out this analysis.

Educational attainment
Less than HS HS Jr Coll Bachelor’s Graduate Total

Mean 38.67 39.6 41.39 42.55 40.85 40.45
SD 15.81 14.97 18.1 13.62 15.51 15.17
n 121 546 97 253 155 1,172
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(a) Write hypotheses for evaluating whether the average number of hours worked varies across the
five groups.

(b) Check conditions and describe any assumptions you must make to proceed with the test.

(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq Mean Sq F value Pr(>F)

degree XXXXX XXXXX 501.54 XXXXX 0.0682

Residuals XXXXX 267,382 XXXXX

Total XXXXX XXXXX

(d) What is the conclusion of the test?
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4.41 GPA and major. Undergraduate students taking an introductory statistics course at
Duke University conducted a survey about GPA and major. The side-by-side box plots show the
distribution of GPA among three groups of majors. Also provided is the ANOVA output.

G
PA

●

Arts and Humanities Natural Sciences Social Sciences

2.7

3.0

3.3

3.6

3.9

Df Sum Sq Mean Sq F value Pr(>F)

major 2 0.03 0.02 0.21 0.8068
Residuals 195 15.77 0.08

(a) Write the hypotheses for testing for a difference between average GPA across majors.

(b) What is the conclusion of the hypothesis test?

(c) How many students answered these questions on the survey, i.e. what is the sample size?

4.42 Child care hours, Part II. Exercise 4.22 introduces the China Health and Nutrition
Survey which, among other things, collects information on number of hours Chinese parents spend
taking care of their children under age 6. The side by side box plots below show the distribution of
this variable by educational attainment of the parent. Also provided below is the ANOVA output
for comparing average hours across educational attainment categories.
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Df Sum Sq Mean Sq F value Pr(>F)

education 4 4142.09 1035.52 1.26 0.2846
Residuals 794 653047.83 822.48

(a) Write the hypotheses for testing for a difference between the average number of hours spent
on child care across educational attainment levels.

(b) What is the conclusion of the hypothesis test?

4.43 True or false, Part II. Determine if the following statements are true or false in ANOVA,
and explain your reasoning for statements you identify as false.

(a) As the number of groups increases, the modified significance level for pairwise tests increases
as well.

(b) As the total sample size increases, the degrees of freedom for the residuals increases as well.

(c) The constant variance condition can be somewhat relaxed when the sample sizes are relatively
consistent across groups.

(d) The independence assumption can be relaxed when the total sample size is large.
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4.44 True or false, Part III. Determine if the following statements are true or false, and
explain your reasoning for statements you identify as false.

If the null hypothesis that the means of four groups are all the same is rejected using ANOVA at
a 5% significance level, then ...

(a) we can then conclude that all the means are different from one another.

(b) the standardized variability between groups is higher than the standardized variability within
groups.

(c) the pairwise analysis will identify at least one pair of means that are significantly different.

(d) the appropriate α to be used in pairwise comparisons is 0.05 / 4 = 0.0125 since there are four
groups.

4.45 Prison isolation experiment, Part II. Exercise 4.35 introduced an experiment that was
conducted with the goal of identifying a treatment that reduces subjects’ psychopathic deviant T
scores, where this score measures a person’s need for control or his rebellion against control. In
Exercise 4.35 you evaluated the success of each treatment individually. An alternative analysis
involves comparing the success of treatments. The relevant ANOVA output is given below.

Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 639.48 319.74 3.33 0.0461
Residuals 39 3740.43 95.91

spooled = 9.793 on df = 39

(a) What are the hypotheses?

(b) What is the conclusion of the test? Use a 5% significance level.

(c) If in part (b) you determined that the test is significant, conduct pairwise tests to determine
which groups are different from each other. If you did not reject the null hypothesis in part (b),
recheck your solution.

4.6.5 Bootstrapping to study the standard deviation

4.46 Poker winnings. An aspiring poker player recorded her winnings and losses over 50
evenings of play, summarized in the figure on the left. The daily winnings averaged $90.08, but
were very volatile with a standard deviation of $703.68. The poker player would like to better
understand how precise the standard deviation estimate is of the volatility in her long term play,
so she constructed a bootstrap distribution for the standard deviation, shown on the right.

(a) Describe the distribution.

(b) Determine whether the bootstrap method is suitable for constructing a confidence interval for
the standard deviation in this exercise.
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4.47 Heights of adults. Researchers studying anthropometry collected body girth measure-
ments and skeletal diameter measurements, as well as age, weight, height and gender, for 507
physically active individuals. The histogram below shows the sample distribution of heights in
centimeters. We would like to get 95% confidence bounds for the standard deviation of the heights
in the population. For this exercise, you may assume the sample is a simple random sample from
the population of interest.44

Height

150 160 170 180 190 200

0

20

40

60

80

100

Min 147.2
Q1 163.8
Median 170.3
Mean 171.1
SD 9.41
Q3 177.8
Max 198.1

(a) What is the point estimate for the standard deviation of the height of active individuals?

(b) The bootstrap distribution for the standard deviation is provided below. Do you think it is
reasonable to construct a 95% confidence interval for the population standard deviation using
the bootstrap? Explain.
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(c) Below are percentiles of the bootstrap distribution. Construct a 95% confidence interval for
the standard deviation.

1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

8.78 8.88 8.97 9.07 9.40 9.73 9.82 9.91 10.01

44G. Heinz et al. “Exploring relationships in body dimensions”. In: Journal of Statistics Education 11.2
(2003).

http://www.amstat.org/publications/jse/v11n2/datasets.heinz.html


Chapter 5

Introduction to linear
regression

Linear regression is a very powerful statistical technique. Many people have some familiarity
with regression just from reading the news, where graphs with straight lines are overlaid
on scatterplots. Linear models can be used for prediction or to evaluate whether there is a
linear relationship between two numerical variables.

Figure 5.1 shows two variables whose relationship can be modeled perfectly with a
straight line. The equation for the line is

y = 5 + 57.49x

Imagine what a perfect linear relationship would mean: you would know the exact value
of y just by knowing the value of x. This is unrealistic in almost any natural process. For
example, if we took family income x, this value would provide some useful information
about how much financial support y a college may offer a prospective student. However,
there would still be variability in financial support, even when comparing students whose
families have similar financial backgrounds.

Linear regression assumes that the relationship between two variables, x and y, can
be modeled by a straight line:

y = β0 + β1x (5.1)

where β0 and β1 represent two model parameters (β is the Greek letter beta). These

β0, β1

Linear model
parameters

parameters are estimated using data, and we write their point estimates as b0 and b1.
When we use x to predict y, we usually call x the explanatory or predictor variable, and
we call y the response.

It is rare for all of the data to fall on a straight line, as seen in the three scatterplots in
Figure 5.2. In each case, the data fall around a straight line, even if none of the observations
fall exactly on the line. The first plot shows a relatively strong downward linear trend, where
the remaining variability in the data around the line is minor relative to the strength of
the relationship between x and y. The second plot shows an upward trend that, while
evident, is not as strong as the first. The last plot shows a very weak downward trend in
the data, so slight we can hardly notice it. In each of these examples, we will have some
uncertainty regarding our estimates of the model parameters, β0 and β1. For instance, we
might wonder, should we move the line up or down a little, or should we tilt it more or less?

219
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Figure 5.1: Requests from twelve separate buyers were simultaneously
placed with a trading company to purchase Target Corporation stock (ticker
TGT, April 26th, 2012), and the total cost of the shares were reported. Be-
cause the cost is computed using a linear formula, the linear fit is perfect.
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Figure 5.2: Three data sets where a linear model may be useful even though
the data do not all fall exactly on the line.

As we move forward in this chapter, we will learn different criteria for line-fitting, and we
will also learn about the uncertainty associated with estimates of model parameters.

We will also see examples in this chapter where fitting a straight line to the data, even
if there is a clear relationship between the variables, is not helpful. One such case is shown
in Figure 5.3 where there is a very strong relationship between the variables even though
the trend is not linear. We will discuss nonlinear trends in this chapter and the next, but
the details of fitting nonlinear models are saved for a later course.
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Figure 5.3: A linear model is not useful in this nonlinear case. These data
are from an introductory physics experiment.

5.1 Line fitting, residuals, and correlation

It is helpful to think deeply about the line fitting process. In this section, we examine
criteria for identifying a linear model and introduce a new statistic, correlation.

5.1.1 Beginning with straight lines

Scatterplots were introduced in Chapter 1 as a graphical technique to present two numerical
variables simultaneously. Such plots permit the relationship between the variables to be
examined with ease. Figure 5.4 shows a scatterplot for the head length and total length
of 104 brushtail possums from Australia. Each point represents a single possum from the
data.

The head and total length variables are associated. Possums with an above average
total length also tend to have above average head lengths. While the relationship is not per-
fectly linear, it could be helpful to partially explain the connection between these variables
with a straight line.

Straight lines should only be used when the data appear to have a linear relationship,
such as the case shown in the left panel of Figure 5.6. The right panel of Figure 5.6 shows
a case where a curved line would be more useful in understanding the relationship between
the two variables.

Caution: Watch out for curved trends
We only consider models based on straight lines in this chapter. If data show a
nonlinear trend, like that in the right panel of Figure 5.6, more advanced techniques
should be used.
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Figure 5.4: A scatterplot showing head length against total length for 104
brushtail possums. A point representing a possum with head length 94.1mm
and total length 89cm is highlighted.

Figure 5.5: The common brushtail possum of Australia.
—————————–
Photo by wollombi on Flickr: www.flickr.com/photos/wollombi/58499575

http://flickr.com/photos/wollombi/58499575/
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Figure 5.6: The figure on the left shows head length versus total length, and
reveals that many of the points could be captured by a straight band. On
the right, we see that a curved band is more appropriate in the scatterplot
for weight and mpgCity from the cars data set.

5.1.2 Fitting a line by eye

We want to describe the relationship between the head length and total length variables
in the possum data set using a line. In this example, we will use the total length as
the predictor variable, x, to predict a possum’s head length, y. We could fit the linear
relationship by eye, as in Figure 5.7. The equation for this line is

ŷ = 41 + 0.59x (5.2)

We can use this line to discuss properties of possums. For instance, the equation predicts
a possum with a total length of 80 cm will have a head length of

ŷ = 41 + 0.59× 80

= 88.2

A “hat” on y is used to signify that this is an estimate. This estimate may be viewed as
an average: the equation predicts that possums with a total length of 80 cm will have an
average head length of 88.2 mm. Absent further information about an 80 cm possum, the
prediction for head length that uses the average is a reasonable estimate.

5.1.3 Residuals

Residuals are the leftover variation in the data after accounting for the model fit:

Data = Fit + Residual

Each observation will have a residual. If an observation is above the regression line, then
its residual, the vertical distance from the observation to the line, is positive. Observations
below the line have negative residuals. One goal in picking the right linear model is for
these residuals to be as small as possible.
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Figure 5.7: A reasonable linear model was fit to represent the relationship
between head length and total length.

Three observations are noted specially in Figure 5.7. The observation marked by an
“×” has a small, negative residual of about -1; the observation marked by “+” has a large
residual of about +7; and the observation marked by “4” has a moderate residual of about
-4. The size of a residual is usually discussed in terms of its absolute value. For example,
the residual for “4” is larger than that of “×” because | − 4| is larger than | − 1|.

Residual: difference between observed and expected
The residual of the ith observation (xi, yi) is the difference of the observed response
(yi) and the response we would predict based on the model fit (ŷi):

ei = yi − ŷi

We typically identify ŷi by plugging xi into the model.

 Example 5.3 The linear fit shown in Figure 5.7 is given as ŷ = 41 + 0.59x. Based
on this line, formally compute the residual of the observation (77.0, 85.3). This obser-
vation is denoted by “×” on the plot. Check it against the earlier visual estimate, -1.

We first compute the predicted value of point “×” based on the model:

ŷ× = 41 + 0.59x× = 41 + 0.59× 77.0 = 86.4

Next we compute the difference of the actual head length and the predicted head
length:

e× = y× − ŷ× = 85.3− 86.4 = −1.1

This is very close to the visual estimate of -1.
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Figure 5.8: Residual plot for the model in Figure 5.7.

⊙
Guided Practice 5.4 If a model underestimates an observation, will the residual
be positive or negative? What about if it overestimates the observation?1

⊙
Guided Practice 5.5 Compute the residuals for the observations (85.0, 98.6) (“+”
in the figure) and (95.5, 94.0) (“4”) using the linear relationship ŷ = 41 + 0.59x. 2

Residuals are helpful in evaluating how well a linear model fits a data set. We often
display them in a residual plot such as the one shown in Figure 5.8 for the regression line
in Figure 5.7. The residuals are plotted at their original horizontal locations but with the
vertical coordinate as the residual. For instance, the point (85.0, 98.6)+ had a residual of
7.45, so in the residual plot it is placed at (85.0, 7.45). Creating a residual plot is sort of
like tipping the scatterplot over so the regression line is horizontal.

 Example 5.6 One purpose of residual plots is to identify characteristics or patterns
still apparent in data after fitting a model. Figure 5.9 shows three scatterplots with
linear models in the first row and residual plots in the second row. Can you identify
any patterns remaining in the residuals?

In the first data set (first column), the residuals show no obvious patterns. The
residuals appear to be scattered randomly around the dashed line that represents 0.

The second data set shows a pattern in the residuals. There is some curvature in the
scatterplot, which is more obvious in the residual plot. We should not use a straight
line to model these data. Instead, a more advanced technique should be used.

1If a model underestimates an observation, then the model estimate is below the actual. The residual,
which is the actual observation value minus the model estimate, must then be positive. The opposite is
true when the model overestimates the observation: the residual is negative.

2(+) First compute the predicted value based on the model:

ŷ+ = 41 + 0.59x+ = 41 + 0.59× 85.0 = 91.15

Then the residual is given by
e+ = y+ − ŷ+ = 98.6− 91.15 = 7.45

This was close to the earlier estimate of 7.
(4) ŷ4 = 41 + 0.59x4 = 97.3. e4 = y4 − ŷ4 = −3.3, close to the estimate of -4.
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Figure 5.9: Sample data with their best fitting lines (top row) and their
corresponding residual plots (bottom row).

The last plot shows very little upwards trend, and the residuals also show no obvious
patterns. It is reasonable to try to fit a linear model to the data. However, it is
unclear whether there is statistically significant evidence that the slope parameter is
different from zero. The point estimate of the slope parameter, labeled b1, is not zero,
but we might wonder if this could just be due to chance. We will address this sort of
scenario in Section 5.4.

5.1.4 Describing linear relationships with correlation

Correlation: strength of a linear relationship
Correlation, which always takes values between -1 and 1, describes the strength
of the linear relationship between two variables. We denote the correlation by R.

R
correlation

We can compute the correlation using a formula, just as we did with the sample mean
and standard deviation. However, this formula is rather complex,3 so we generally perform
the calculations on a computer or calculator. Figure 5.10 shows eight plots and their
corresponding correlations. Only when the relationship is perfectly linear is the correlation
either -1 or 1. If the relationship is strong and positive, the correlation will be near +1.
If it is strong and negative, it will be near -1. If there is no apparent linear relationship
between the variables, then the correlation will be near zero.

The correlation is intended to quantify the strength of a linear trend. Nonlinear trends,

3Formally, we can compute the correlation for observations (x1, y1), (x2, y2), ..., (xn, yn) using the
formula

R =
1

n− 1

n∑
i=1

xi − x̄
sx

yi − ȳ
sy

where x̄, ȳ, sx, and sy are the sample means and standard deviations for each variable.
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Figure 5.10: Sample scatterplots and their correlations. The first row shows
variables with a positive relationship, represented by the trend up and to
the right. The second row shows variables with a negative trend, where a
large value in one variable is associated with a low value in the other.

even when strong, sometimes produce correlations that do not reflect the strength of the
relationship; see three such examples in Figure 5.11.⊙

Guided Practice 5.7 It appears no straight line would fit any of the datasets
represented in Figure 5.11. Instead, try drawing nonlinear curves on each plot. Once
you create a curve for each, describe what is important in your fit.4

5.2 Fitting a line by least squares regression

Fitting linear models by eye is open to criticism since it is based on an individual preference.
In this section, we use least squares regression as a more rigorous approach.

This section considers family income and gift aid data from a random sample of fifty
students in the 2011 freshman class of Elmhurst College in Illinois.5 Gift aid is financial
aid that does not need to be paid back, as opposed to a loan. A scatterplot of the data
is shown in Figure 5.12 along with two linear fits. The lines follow a negative trend in
the data; students who have higher family incomes tended to have lower gift aid from the
university.⊙

Guided Practice 5.8 Is the correlation positive or negative in Figure 5.12?6

4We’ll leave it to you to draw the lines. In general, the lines you draw should be close to most points
and reflect overall trends in the data.

5These data were sampled from a table of data for all freshman from the 2011 class at Elmhurst
College that accompanied an article titled What Students Really Pay to Go to College published online by
The Chronicle of Higher Education: chronicle.com/article/What-Students-Really-Pay-to-Go/131435

6Larger family incomes are associated with lower amounts of aid, so the correlation will be negative.
Using a computer, the correlation can be computed: -0.499.

http://chronicle.com/article/What-Students-Really-Pay-to-Go/131435


228 CHAPTER 5. INTRODUCTION TO LINEAR REGRESSION

R = −0.23
y

R = 0.31

y

R = 0.50

Figure 5.11: Sample scatterplots and their correlations. In each case, there
is a strong relationship between the variables. However, the correlation is
not very strong, and the relationship is not linear.
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Figure 5.12: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College. Two lines are fit to the data, the solid
line being the least squares line.
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5.2.1 An objective measure for finding the best line

We begin by thinking about what we mean by “best”. Mathematically, we want a line
that has small residuals. Perhaps our criterion could minimize the sum of the residual
magnitudes:

|e1|+ |e2|+ · · ·+ |en| (5.9)

which we could accomplish with a computer program. The resulting dashed line shown
in Figure 5.12 demonstrates this fit can be quite reasonable. However, a more common
practice is to choose the line that minimizes the sum of the squared residuals:

e2
1 + e2

2 + · · ·+ e2
n (5.10)

The line that minimizes this least squares criterion is represented as the solid line in
Figure 5.12. This is commonly called the least squares line. The following are three
possible reasons to choose Criterion (5.10) over Criterion (5.9):

1. It is the most commonly used method.

2. Computing the line based on Criterion (5.10) is much easier by hand and in most
statistical software.

3. In many applications, a residual twice as large as another residual is more than twice
as bad. For example, being off by 4 is usually more than twice as bad as being off by
2. Squaring the residuals accounts for this discrepancy.

The first two reasons are largely for tradition and convenience; the last reason explains why
Criterion (5.10) is typically most helpful.7

5.2.2 Finding the least squares line

For the Elmhurst data, we could write the equation of the least squares regression line as

âid = β0 + β1 × family income

Here the equation is set up to predict gift aid based on a student’s family income, which
would be useful to students considering Elmhurst. These two values, β0 and β1, are the
parameters of the regression line.

As in Chapters 4-6, the parameters are estimated using observed data. In practice,
this estimation is done using a computer in the same way that other estimates, like a
sample mean, can be estimated using a computer or calculator. However, we can also find
the parameter estimates by applying two properties of the least squares line:

• The slope of the least squares line can be estimated by

b1 =
sy
sx
R (5.11)

where R is the correlation between the two variables, and sx and sy are the sample
standard deviations of the explanatory variable and response, respectively.

• If x̄ is the mean of the horizontal variable (from the data) and ȳ is the mean of the
vertical variable, then the point (x̄, ȳ) is on the least squares line.

b0, b1
Sample
estimates
of β0, β1

We use b0 and b1 to represent the point estimates of the parameters β0 and β1.

7There are applications where Criterion (5.9) may be more useful, and there are plenty of other criteria
we might consider. However, this book only applies the least squares criterion.
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⊙
Guided Practice 5.12 Table 5.13 shows the sample means for the family income
and gift aid as $101,800 and $19,940, respectively. Plot the point (101.8, 19.94) on
Figure 5.12 on page 228 to verify it falls on the least squares line (the solid line).8

family income, in $1000s (“x”) gift aid, in $1000s (“y”)

mean x̄ = 101.8 ȳ = 19.94
sd sx = 63.2 sy = 5.46

R = −0.499

Table 5.13: Summary statistics for family income and gift aid.

⊙
Guided Practice 5.13 Using the summary statistics in Table 5.13, compute the
slope for the regression line of gift aid against family income.9

You might recall the point-slope form of a line from math class (another common
form is slope-intercept). Given the slope of a line and a point on the line, (x0, y0), the
equation for the line can be written as

y − y0 = slope× (x− x0) (5.14)

A common exercise to become more familiar with foundations of least squares regression
is to use basic summary statistics and point-slope form to produce the least squares line.

TIP: Identifying the least squares line from summary statistics
To identify the least squares line from summary statistics:

• Estimate the slope parameter, β1, by calculating b1 using Equation (5.11).

• Noting that the point (x̄, ȳ) is on the least squares line, use x0 = x̄ and y0 = ȳ
along with the slope b1 in the point-slope equation:

y − ȳ = b1(x− x̄)

• Simplify the equation.

8If you need help finding this location, draw a straight line up from the x-value of 100 (or thereabout).
Then draw a horizontal line at 20 (or thereabout). These lines should intersect on the least squares line.

9Apply Equation (5.11) with the summary statistics from Table 5.13 to compute the slope:

b1 =
sy

sx
R =

5.46

63.2
(−0.499) = −0.0431
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 Example 5.15 Using the point (101.8, 19.94) from the sample means and the slope
estimate b1 = −0.0431 from Guided Practice 5.13, find the least-squares line for
predicting aid based on family income.

Apply the point-slope equation using (101.8, 19.94) and the slope b1 = −0.0431:

y − y0 = b1(x− x0)

y − 19.94 = −0.0431(x− 101.8)

Expanding the right side and then adding 19.94 to each side, the equation simplifies:

âid = 24.3− 0.0431× family income

Here we have replaced y with âid and x with family income to put the equation in
context.

We mentioned earlier that a computer is usually used to compute the least squares
line. A summary table based on computer output is shown in Table 5.14 for the Elmhurst
data. The first column of numbers provides estimates for b0 and b1, respectively. Compare
these to the result from Example 5.15.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.3193 1.2915 18.83 0.0000
family income -0.0431 0.0108 -3.98 0.0002

Table 5.14: Summary of least squares fit for the Elmhurst data. Compare
the parameter estimates in the first column to the results of Example 5.15.

 Example 5.16 Examine the second, third, and fourth columns in Table 5.14. Can
you guess what they represent?

We’ll describe the meaning of the columns using the second row, which corresponds
to β1. The first column provides the point estimate for β1, as we calculated in
an earlier example: -0.0431. The second column is a standard error for this point
estimate: 0.0108. The third column is a t test statistic for the null hypothesis that
β1 = 0: T = −3.98. The last column is the p-value for the t test statistic for the null
hypothesis β1 = 0 and a two-sided alternative hypothesis: 0.0002. We will get into
more of these details in Section 5.4.

 Example 5.17 Suppose a high school senior is considering Elmhurst College. Can
she simply use the linear equation that we have estimated to calculate her financial
aid from the university?

She may use it as an estimate, though some qualifiers on this approach are important.
First, the data all come from one freshman class, and the way aid is determined by
the university may change from year to year. Second, the equation will provide an
imperfect estimate. While the linear equation is good at capturing the trend in the
data, no individual student’s aid will be perfectly predicted.
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5.2.3 Interpreting regression line parameter estimates

Interpreting parameters in a regression model is often one of the most important steps in
the analysis.

 Example 5.18 The slope and intercept estimates for the Elmhurst data are -0.0431
and 24.3. What do these numbers really mean?

Interpreting the slope parameter is helpful in almost any application. For each addi-
tional $1,000 of family income, we would expect a student to receive a net difference
of $1,000 × (−0.0431) = −$43.10 in aid on average, i.e. $43.10 less. Note that a
higher family income corresponds to less aid because the coefficient of family income
is negative in the model. We must be cautious in this interpretation: while there
is a real association, we cannot interpret a causal connection between the variables
because these data are observational. That is, increasing a student’s family income
may not cause the student’s aid to drop. (It would be reasonable to contact the
college and ask if the relationship is causal, i.e. if Elmhurst College’s aid decisions
are partially based on students’ family income.)

The estimated intercept b0 = 24.3 (in $1000s) describes the average aid if a student’s
family had no income. The meaning of the intercept is relevant to this application
since the family income for some students at Elmhurst is $0. In other applications,
the intercept may have little or no practical value if there are no observations where
x is near zero.

Interpreting parameters estimated by least squares
The slope describes the estimated difference in the y variable if the explanatory
variable x for a case happened to be one unit larger. The intercept describes the
average outcome of y if x = 0 and the linear model is valid all the way to x = 0,
which in many applications is not the case.

5.2.4 Extrapolation is treacherous

When those blizzards hit the East Coast this winter, it proved to my satisfaction that global warming

was a fraud. That snow was freezing cold. But in an alarming trend, temperatures this spring have

risen. Consider this: On February 6th it was 10 degrees. Today it hit almost 80. At this rate, by

August it will be 220 degrees. So clearly folks the climate debate rages on.

Stephen Colbert

April 6th, 2010 10

Linear models can be used to approximate the relationship between two variables.
However, these models have real limitations. Linear regression is simply a modeling frame-
work. The truth is almost always much more complex than our simple line. For example,
we do not know how the data outside of our limited window will behave.

10http://www.colbertnation.com/the-colbert-report-videos/269929/

http://www.colbertnation.com/the-colbert-report-videos/269929/
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Figure 5.15: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College, shown with the least squares regression
line.

 Example 5.19 Use the model âid = 24.3 − 0.0431 × family income to estimate
the aid of another freshman student whose family had income of $1 million.

Recall that the units of family income are in $1000s, so we want to calculate the aid
for family income = 1000:

24.3− 0.0431× family income = 24.3− 0.0431× 1000 = −18.8

The model predicts this student will have -$18,800 in aid (!). Elmhurst College cannot
(or at least does not) require any students to pay extra on top of tuition to attend.

Applying a model estimate to values outside of the realm of the original data is called
extrapolation. Generally, a linear model is only an approximation of the real relation-
ship between two variables. If we extrapolate, we are making an unreliable bet that the
approximate linear relationship will be valid in places where it has not been explored.

5.2.5 Using R2 to describe the strength of a fit

We evaluated the strength of the linear relationship between two variables earlier using the
correlation, R. However, it is more common to explain the strength of a linear fit using R2,
called R-squared. If provided with a linear model, we might like to describe how closely
the data cluster around the linear fit.

The R2 of a linear model describes the amount of variation in the response that is
explained by the least squares line. For example, consider the Elmhurst data, shown in
Figure 5.15. The variance of the response variable, aid received, is s2

aid = 29.8. However,
if we apply our least squares line, then this model reduces our uncertainty in predicting
aid using a student’s family income. The variability in the residuals describes how much
variation remains after using the model: s2

RES
= 22.4. In short, there was a reduction of

s2
aid − s2

RES

s2
aid

=
29.8− 22.4

29.8
=

7.5

29.8
= 0.25
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Figure 5.16: Total auction prices for the video game Mario Kart, divided
into used (x = 0) and new (x = 1) condition games. The least squares
regression line is also shown.

or about 25% in the data’s variation by using information about family income for predicting
aid using a linear model. This corresponds exactly to the R-squared value:

R = −0.499 R2 = 0.25⊙
Guided Practice 5.20 If a linear model has a very strong negative relationship
with a correlation of -0.97, how much of the variation in the response is explained by
the explanatory variable?11

5.2.6 Categorical predictors with two levels

Categorical variables are also useful in predicting outcomes. Here we consider a categorical
predictor with two levels (recall that a level is the same as a category). We’ll consider Ebay
auctions for a video game, Mario Kart for the Nintendo Wii, where both the total price of
the auction and the condition of the game were recorded.12 Here we want to predict total
price based on game condition, which takes values used and new. A plot of the auction
data is shown in Figure 5.16.

To incorporate the game condition variable into a regression equation, we must convert
the categories into a numerical form. We will do so using an indicator variable called
cond new, which takes value 1 when the game is new and 0 when the game is used. Using
this indicator variable, the linear model may be written as

p̂rice = β0 + β1 × cond new

11About R2 = (−0.97)2 = 0.94 or 94% of the variation is explained by the linear model.
12These data were collected in Fall 2009 and may be found at openintro.org.

http://www.openintro.org
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.87 0.81 52.67 0.0000
cond new 10.90 1.26 8.66 0.0000

Table 5.17: Least squares regression summary for the final auction price
against the condition of the game.

The fitted model is summarized in Table 5.17, and the model with its parameter estimates
is given as

p̂rice = 42.87 + 10.90× cond new

 Example 5.21 Interpret the two parameters estimated in the model for the price
of Mario Kart in eBay auctions.

The intercept is the estimated price when cond new takes value 0, i.e. when the game
is in used condition. That is, the average selling price of a used version of the game
is $42.87.

The slope indicates that, on average, new games sell for about $10.90 more than used
games.

TIP: Interpreting model estimates for categorical predictors.
The estimated intercept is the value of the response variable for the first category
(i.e. the category corresponding to an indicator value of 0). The estimated slope is
the average change in the response variable between the two categories.

We’ll elaborate further on this Ebay auction data in Chapter 6, where we examine the
influence of many predictor variables simultaneously using multiple regression. In multiple
regression, we will consider the association of auction price with regard to each variable
while controlling for the influence of other variables. This is especially important since
some of the predictors are associated. For example, auctions with games in new condition
also often came with more accessories.

5.3 Types of outliers in linear regression

In this section, we identify criteria for determining which outliers are important and influ-
ential.

Outliers in regression are observations that fall far from the “cloud” of points. These
points are especially important because they can have a strong influence on the least squares
line.
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 Example 5.22 There are six plots shown in Figure 5.18 along with the least squares
line and residual plots. For each scatterplot and residual plot pair, identify any
obvious outliers and note how they influence the least squares line. Recall that an
outlier is any point that doesn’t appear to belong with the vast majority of the other
points.

(1) There is one outlier far from the other points, though it only appears to slightly
influence the line.

(2) There is one outlier on the right, though it is quite close to the least squares
line, which suggests it wasn’t very influential.

(3) There is one point far away from the cloud, and this outlier appears to pull the
least squares line up on the right; examine how the line around the primary
cloud doesn’t appear to fit very well.

(4) There is a primary cloud and then a small secondary cloud of four outliers. The
secondary cloud appears to be influencing the line somewhat strongly, making
the least square line fit poorly almost everywhere. There might be an interesting
explanation for the dual clouds, which is something that could be investigated.

(5) There is no obvious trend in the main cloud of points and the outlier on the
right appears to largely control the slope of the least squares line.

(6) There is one outlier far from the cloud, however, it falls quite close to the least
squares line and does not appear to be very influential.

Examine the residual plots in Figure 5.18. You will probably find that there is some
trend in the main clouds of (3) and (4). In these cases, the outliers influenced the slope of
the least squares lines. In (5), data with no clear trend were assigned a line with a large
trend simply due to one outlier (!).

Leverage
Points that fall horizontally away from the center of the cloud tend to pull harder
on the line, so we call them points with high leverage.

Points that fall horizontally far from the line are points of high leverage; these points
can strongly influence the slope of the least squares line. If one of these high leverage
points does appear to actually invoke its influence on the slope of the line – as in cases (3),
(4), and (5) of Example 5.22 – then we call it an influential point. Usually we can say
a point is influential if, had we fitted the line without it, the influential point would have
been unusually far from the least squares line.

It is tempting to remove outliers. Don’t do this without a very good reason. Models
that ignore exceptional (and interesting) cases often perform poorly. For instance, if a
financial firm ignored the largest market swings – the “outliers” – they would soon go
bankrupt by making poorly thought-out investments.

Caution: Don’t ignore outliers when fitting a final model
If there are outliers in the data, they should not be removed or ignored without
a good reason. Whatever final model is fit to the data would not be very helpful if
it ignores the most exceptional cases.
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(1) (2) (3)

(4) (5) (6)

Figure 5.18: Six plots, each with a least squares line and residual plot. All
data sets have at least one outlier.
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Caution: Outliers for a categorical predictor with two levels
Be cautious about using a categorical predictor when one of the levels has very few
observations. When this happens, those few observations become influential points.

5.4 Inference for linear regression

In this section we discuss uncertainty in the estimates of the slope and y-intercept for
a regression line. Just as we identified standard errors for point estimates in previous
chapters, we first discuss standard errors for these new estimates. However, in the case of
regression, we will identify standard errors using statistical software.

5.4.1 Conditions for the least squares line

When performing inference on a least squares line, we generally require the following:

Linearity. The data should show a linear trend. If there is a nonlinear trend (e.g. left
panel of Figure 5.19), an advanced regression method from another book or later
course should be applied.

Nearly normal residuals. Generally the residuals must be nearly normal. When this
condition is found to be unreasonable, it is usually because of outliers or concerns
about influential points, which we will discuss in greater depth in Section 5.3. An
example of non-normal residuals is shown in the second panel of Figure 5.19.

Constant variability. The variability of points around the least squares line remains
roughly constant. An example of non-constant variability is shown in the third panel
of Figure 5.19.

Independent observations. Be cautious about applying regression to data collected se-
quentially in what is called a time series. Such data may have an underlying struc-
ture that should be considered in a model and analysis. An example of a time series
where independence is violated is shown in the fourth panel of Figure 5.19.

For additional information on checking regression conditions, see Section 6.3.

 Example 5.23 Should we have concerns about applying inference to the Elmhurst
data in Figure 5.20?

The trend appears to be linear, the data fall around the line with no obvious outliers,
the variance is roughly constant. These are also not time series observations. It would
be reasonable to analyze the model using inference.

5.4.2 Midterm elections and unemployment

Elections for members of the United States House of Representatives occur every two
years, coinciding every four years with the U.S. Presidential election. The set of House
elections occurring during the middle of a Presidential term are called midterm elections.
In America’s two-party system, one political theory suggests the higher the unemployment
rate, the worse the President’s party will do in the midterm elections.

To assess the validity of this claim, we can compile historical data and look for a
connection. We consider every midterm election from 1898 to 2010, with the exception
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Figure 5.19: Four examples showing when the methods in this chapter are
insufficient to apply to the data. In the left panel, a straight line does not
fit the data. In the second panel, there are outliers; two points on the left
are relatively distant from the rest of the data, and one of these points
is very far away from the line. In the third panel, the variability of the
data around the line increases with larger values of x. In the last panel,
a time series data set is shown, where successive observations are highly
correlated.
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Figure 5.20: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College. Two lines are fit to the data, the solid
line being the least squares line.
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Figure 5.21: The percent change in House seats for the President’s party
in each election from 1898 to 2010 plotted against the unemployment rate.
The two points for the Great Depression have been removed, and a least
squares regression line has been fit to the data.

of those elections during the Great Depression. Figure 5.21 shows these data and the
least-squares regression line:

% change in House seats for President’s party

= −6.71− 1.00× (unemployment rate)

We consider the percent change in the number of seats of the President’s party (e.g. percent
change in the number of seats for Democrats in 2010) against the unemployment rate.

Examining the data, there are no clear deviations from linearity, the constant variance
condition, or in the normality of residuals (though we don’t examine a normal probability
plot here). While the data are collected sequentially, a separate analysis was used to check
for any apparent correlation between successive observations; no such correlation was found.⊙

Guided Practice 5.24 The data for the Great Depression (1934 and 1938) were
removed because the unemployment rate was 21% and 18%, respectively. Do you
agree that they should be removed for this investigation? Why or why not?13

There is a negative slope in the line shown in Figure 5.21. However, this slope (and
the y-intercept) are only estimates of the parameter values. We might wonder, is this
convincing evidence that the “true” linear model has a negative slope? That is, do the
data provide strong evidence that the political theory is accurate? We can frame this

13We will provide two considerations. Each of these points would have very high leverage on any
least-squares regression line, and years with such high unemployment may not help us understand what
would happen in other years where the unemployment is only modestly high. On the other hand, these
are exceptional cases, and we would be discarding important information if we exclude them from a final
analysis.
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investigation into a two-sided statistical hypothesis test. We use a two-sided test since a
statistically significant result in either direction would be interesting.

H0: β1 = 0. The true linear model has slope zero.

HA: β1 6= 0. The true linear model has a slope different than zero. The higher the
unemployment, the greater the loss for the President’s party in the House of Repre-
sentatives, or vice-versa.

We would reject H0 in favor of HA if the data provide strong evidence that the true slope
parameter is less than zero. To assess the hypotheses, we identify a standard error for the
estimate, compute an appropriate test statistic, and identify the p-value.

5.4.3 Understanding regression output from software

Just like other point estimates we have seen before, we can compute a standard error and
test statistic for b1. We will generally label the test statistic using a T , since it follows the
t distribution.

We will rely on statistical software to compute the standard error and leave the ex-
planation of how this standard error is determined to a second or third statistics course.
Table 5.22 shows software output for the least squares regression line in Figure 5.21. The
row labeled unemp represents the information for the slope, which is the coefficient of the
unemployment variable.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.7142 5.4567 -1.23 0.2300

unemp -1.0010 0.8717 -1.15 0.2617
df = 25

Table 5.22: Output from statistical software for the regression line modeling
the midterm election gains and losses for the President’s party as a response
to unemployment.

 Example 5.25 What do the first and second columns of Table 5.22 represent?

The entries in the first column represent the least squares estimates, b0 and b1, and
the values in the second column correspond to the standard errors of each estimate.

We previously used a t test statistic for hypothesis testing in the context of numerical
data. Regression is very similar. In the hypotheses we consider, the null value for the slope
is 0, so we can compute the test statistic using the T (or Z) score formula:

T =
estimate− null value

SE
=
−1.0010− 0

0.8717
= −1.15

We can look for the two-tailed p-value – shown in Figure 5.23 – using the probability table
for the t distribution in Appendix C.2 on page 342.
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−2.62 −1.74 −0.87 0 0.87 1.74 2.62

Figure 5.23: The distribution shown here is the sampling distribution for
b1, if the null hypothesis was true. The shaded tail represents the p-value
for the hypothesis test evaluating whether there is convincing evidence that
higher unemployment corresponds to a greater loss of House seats for the
President’s party during a midterm election.

 Example 5.26 Table 5.22 offers the degrees of freedom for the test statistic T :
df = 25. Identify the p-value for the hypothesis test.

Looking in the 25 degrees of freedom row in Appendix C.2, we see that the absolute
value of the test statistic is smaller than any value listed, which means the tail area
and therefore also the p-value is larger than 0.200 (two tails!). Because the p-value
is so large, we fail to reject the null hypothesis. That is, the data do not provide
convincing evidence that unemployment is a good predictor of how well a president’s
party will do in the midterm elections for the House of Representatives.

We could have identified the t test statistic from the software output in Table 5.22,
shown in the second row (unemp) and third column (t value). The entry in the second
row and last column in Table 5.22 represents the p-value for the two-sided hypothesis test
where the null value is zero.

Inference for regression
We usually rely on statistical software to identify point estimates and standard
errors for parameters of a regression line. After verifying conditions hold for fitting
a line, we can use the methods learned in Section 4.1 for the t distribution to create
confidence intervals for regression parameters or to evaluate hypothesis tests.

Caution: Don’t carelessly use the p-value from regression output
The last column in regression output often lists p-values for one particular hypoth-
esis: a two-sided test where the null value is zero. If a hypothesis test should be
one-sided or a comparison is being made to a value other than zero, be cautious
about using the software output to obtain the p-value.
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 Example 5.27 Examine Figure 5.15 on page 233, which relates the Elmhurst Col-
lege aid and student family income. How sure are you that the slope is statistically
significantly different from zero? That is, do you think a formal hypothesis test would
reject the claim that the true slope of the line should be zero?

While the relationship between the variables is not perfect, there is an evident de-
creasing trend in the data. This suggests the hypothesis test will reject the null claim
that the slope is zero.⊙
Guided Practice 5.28 Table 5.24 shows statistical software output from fitting
the least squares regression line shown in Figure 5.15. Use this output to formally
evaluate the following hypotheses. H0: The true coefficient for family income is zero.
HA: The true coefficient for family income is not zero.14

Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.3193 1.2915 18.83 0.0000

family income -0.0431 0.0108 -3.98 0.0002
df = 48

Table 5.24: Summary of least squares fit for the Elmhurst College data.

TIP: Always check assumptions
If conditions for fitting the regression line do not hold, then the methods presented
here should not be applied. The standard error or distribution assumption of the
point estimate – assumed to be normal when applying the t test statistic – may
not be valid.

5.4.4 An alternative test statistic

We considered the t test statistic as a way to evaluate the strength of evidence for a
hypothesis test in Section 5.4.3. However, we could focus on R2. Recall that R2 described
the proportion of variability in the response variable (y) explained by the explanatory
variable (x). If this proportion is large, then this suggests a linear relationship exists
between the variables. If this proportion is small, then the evidence provided by the data
may not be convincing.

This concept – considering the amount of variability in the response variable explained
by the explanatory variable – is a key component in some statistical techniques. The anal-
ysis of variance (ANOVA) technique introduced in Section 4.4 uses this general principle.
The method states that if enough variability is explained away by the categories, then we
would conclude the mean varied between the categories. On the other hand, we might not
be convinced if only a little variability is explained. ANOVA can be further employed in
advanced regression modeling to evaluate the inclusion of explanatory variables, though we
leave these details to a later course.

14We look in the second row corresponding to the family income variable. We see the point estimate of
the slope of the line is -0.0431, the standard error of this estimate is 0.0108, and the t test statistic is -3.98.
The p-value corresponds exactly to the two-sided test we are interested in: 0.0002. The p-value is so small
that we reject the null hypothesis and conclude that family income and financial aid at Elmhurst College
for freshman entering in the year 2011 are negatively correlated and the true slope parameter is indeed less
than 0, just as we believed in Example 5.27.
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5.5 Exercises

5.5.1 Line fitting, residuals, and correlation

5.1 Visualize the residuals. The scatterplots shown below each have a superimposed regression
line. If we were to construct a residual plot (residuals versus x) for each, describe what those plots
would look like.
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5.2 Trends in the residuals. Shown below are two plots of residuals remaining after fitting a
linear model to two different sets of data. Describe important features and determine if a linear
model would be appropriate for these data. Explain your reasoning.
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5.3 Identify relationships, Part I. For each of the six plots, identify the strength of the
relationship (e.g. weak, moderate, or strong) in the data and whether fitting a linear model would
be reasonable.
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5.4 Identify relationships, Part I. For each of the six plots, identify the strength of the
relationship (e.g. weak, moderate, or strong) in the data and whether fitting a linear model would
be reasonable.
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5.5 Exams and grades. The two scatterplots below show the relationship between final and
mid-semester exam grades recorded during several years for a Statistics course at a university.

(a) Based on these graphs, which of the two exams has the strongest correlation with the final
exam grade? Explain.

(b) Can you think of a reason why the correlation between the exam you chose in part (a) and
the final exam is higher?
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5.6 Husbands and wives, Part I. The Great Britain Office of Population Census and Surveys
once collected data on a random sample of 170 married couples in Britain, recording the age (in
years) and heights (converted here to inches) of the husbands and wives.15 The scatterplot on the
left shows the wife’s age plotted against her husband’s age, and the plot on the right shows wife’s
height plotted against husband’s height.
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(a) Describe the relationship between husbands’ and wives’ ages.

(b) Describe the relationship between husbands’ and wives’ heights.

(c) Which plot shows a stronger correlation? Explain your reasoning.

(d) Data on heights were originally collected in centimeters, and then converted to inches. Does
this conversion affect the correlation between husbands’ and wives’ heights?

5.7 Match the correlation, Part I.
Match the calculated correlations to the
corresponding scatterplot.

(a) R = −0.7

(b) R = 0.45

(c) R = 0.06

(d) R = 0.92
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15D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.
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5.8 Match the correlation, Part II.
Match the calculated correlations to the
corresponding scatterplot.

(a) R = 0.49

(b) R = −0.48

(c) R = −0.03

(d) R = −0.85
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5.9 Speed and height. 1,302 UCLA students were asked to fill out a survey where they were
asked about their height, fastest speed they have ever driven, and gender. The scatterplot on the
left displays the relationship between height and fastest speed, and the scatterplot on the right
displays the breakdown by gender in this relationship.
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(a) Describe the relationship between height and fastest speed.

(b) Why do you think these variables are positively associated?

(c) What role does gender play in the relationship between height and fastest driving speed?
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5.10 Trees. The scatterplots below show the relationship between height, diameter, and volume
of timber in 31 felled black cherry trees. The diameter of the tree is measured 4.5 feet above the
ground.16
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(a) Describe the relationship between volume and height of these trees.

(b) Describe the relationship between volume and diameter of these trees.

(c) Suppose you have height and diameter measurements for another black cherry tree. Which of
these variables would be preferable to use to predict the volume of timber in this tree using a
simple linear regression model? Explain your reasoning.

5.11 The Coast Starlight, Part I. The Coast Starlight Amtrak train runs from Seattle to Los
Angeles. The scatterplot below displays the distance between each stop (in miles) and the amount
of time it takes to travel from one stop to another (in minutes).

(a) Describe the relationship between
distance and travel time.

(b) How would the relationship change
if travel time was instead measured
in hours, and distance was instead
measured in kilometers?

(c) Correlation between travel time (in
miles) and distance (in minutes) is
R = 0.636. What is the correlation
between travel time (in kilometers)
and distance (in hours)?

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

Distance (miles)

Tr
av

el
 T

im
e 

(m
in

ut
es

)

0 100 200 300

60

120

180

240

300

360

16Source: R Dataset, http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/trees.html.

http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/trees.html
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5.12 Crawling babies, Part I. A study conducted at the University of Denver investigated
whether babies take longer to learn to crawl in cold months, when they are often bundled in clothes
that restrict their movement, than in warmer months.17 Infants born during the study year were
split into twelve groups, one for each birth month. We consider the average crawling age of babies
in each group against the average temperature when the babies are six months old (that’s when
babies often begin trying to crawl). Temperature is measured in degrees Fahrenheit (◦F) and age
is measured in weeks.

(a) Describe the relationship between
temperature and crawling age.

(b) How would the relationship change
if temperature was measured in de-
grees Celsius (◦C) and age was
measured in months?

(c) The correlation between tempera-
ture in ◦F and age in weeks was
R = −0.70. If we converted
the temperature to ◦C and age to
months, what would the correlation
be?
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5.13 Body measurements, Part I. Researchers studying anthropometry collected body girth
measurements and skeletal diameter measurements, as well as age, weight, height and gender for
507 physically active individuals.18 The scatterplot below shows the relationship between height
and shoulder girth (over deltoid muscles), both measured in centimeters.

(a) Describe the relationship between
shoulder girth and height.

(b) How would the relationship change
if shoulder girth was measured in
inches while the units of height re-
mained in centimeters?

90 100 110 120 130

150

160

170

180

190

200

Shoulder girth (in cm)

H
ei

gh
t (

in
 c

m
)

17J.B. Benson. “Season of birth and onset of locomotion: Theoretical and methodological implications”.
In: Infant behavior and development 16.1 (1993), pp. 69–81. issn: 0163-6383.

18G. Heinz et al. “Exploring relationships in body dimensions”. In: Journal of Statistics Education 11.2
(2003).

http://www.sciencedirect.com/science/article/pii/0163638393800298
http://www.amstat.org/publications/jse/v11n2/datasets.heinz.html
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5.14 Body measurements, Part II. The scatterplot below shows the relationship between
weight measured in kilograms and hip girth measured in centimeters from the data described in
Exercise 5.13.

(a) Describe the relationship between
hip girth and weight.

(b) How would the relationship change
if weight was measured in pounds
while the units for hip girth re-
mained in centimeters?
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5.15 Correlation, Part I. What would be the correlation between the ages of husbands and
wives if men always married woman who were

(a) 3 years younger than themselves?

(b) 2 years older than themselves?

(c) half as old as themselves?

5.16 Correlation, Part II. What would be the correlation between the annual salaries of males
and females at a company if for a certain type of position men always made

(a) $5,000 more than women?

(b) 25% more than women?

(c) 15% less than women?
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5.5.2 Fitting a line by least squares regression

5.17 Tourism spending. The Association of Turkish Travel Agencies reports the number of
foreign tourists visiting Turkey and tourist spending by year.19 The scatterplot below shows the
relationship between these two variables along with the least squares fit.

(a) Describe the relationship between number of tourists and spending.

(b) What are the explanatory and response variables?

(c) Why might we want to fit a regression line to these data?

(d) Do the data meet the conditions required for fitting a least squares line? In addition to the
scatterplot, use the residual plot and histogram to answer this question.
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19Association of Turkish Travel Agencies, Foreign Visitors Figure & Tourist Spendings By Years.

http://www.tursab.org.tr/en/statistics/foreign-visitors-figure-tourist-spendings-by-years_1083.html
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5.18 Nutrition at Starbucks, Part I. The scatterplot below shows the relationship between
the number of calories and amount of carbohydrates (in grams) Starbucks food menu items con-
tain.20 Since Starbucks only lists the number of calories on the display items, we are interested in
predicting the amount of carbs a menu item has based on its calorie content.

(a) Describe the relationship between number of calories and amount of carbohydrates (in grams)
that Starbucks food menu items contain.

(b) In this scenario, what are the explanatory and response variables?

(c) Why might we want to fit a regression line to these data?

(d) Do these data meet the conditions required for fitting a least squares line?

Calories

C
ar

b 
(in

 g
ra

m
s)

100 200 300 400 500

20
40

60
80

−
40

−
20

0
20

40 Residuals
−30 −15 0 15 30

0

5

10

15

20

25

5.19 The Coast Starlight, Part II. Exercise 5.11 introduces data on the Coast Starlight
Amtrak train that runs from Seattle to Los Angeles. The mean travel time from one stop to the
next on the Coast Starlight is 129 mins, with a standard deviation of 113 minutes. The mean
distance traveled from one stop to the next is 107 miles with a standard deviation of 99 miles. The
correlation between travel time and distance is 0.636.

(a) Write the equation of the regression line for predicting travel time.

(b) Interpret the slope and the intercept in this context.

(c) Calculate R2 of the regression line for predicting travel time from distance traveled for the
Coast Starlight, and interpret R2 in the context of the application.

(d) The distance between Santa Barbara and Los Angeles is 103 miles. Use the model to estimate
the time it takes for the Starlight to travel between these two cities.

(e) It actually takes the the Coast Starlight about 168 mins to travel from Santa Barbara to Los
Angeles. Calculate the residual and explain the meaning of this residual value.

(f) Suppose Amtrak is considering adding a stop to the Coast Starlight 500 miles away from Los
Angeles. Would it be appropriate to use this linear model to predict the travel time from Los
Angeles to this point?

20Source: Starbucks.com, collected on March 10, 2011,
http://www.starbucks.com/menu/nutrition.
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5.20 Body measurements, Part III. Exercise 5.13 introduces data on shoulder girth and
height of a group of individuals. The mean shoulder girth is 108.20 cm with a standard deviation
of 10.37 cm. The mean height is 171.14 cm with a standard deviation of 9.41 cm. The correlation
between height and shoulder girth is 0.67.

90 100 110 120 130

150

160

170

180

190

200

Shoulder girth (in cm)

H
ei

gh
t (

in
 c

m
)

(a) Write the equation of the regression line for predicting height.

(b) Interpret the slope and the intercept in this context.

(c) Calculate R2 of the regression line for predicting height from shoulder girth, and interpret it
in the context of the application.

(d) A randomly selected student from your class has a shoulder girth of 100 cm. Predict the height
of this student using the model.

(e) The student from part (d) is 160 cm tall. Calculate the residual, and explain what this residual
means.

(f) A one year old has a shoulder girth of 56 cm. Would it be appropriate to use this linear model
to predict the height of this child?

5.21 Helmets and lunches. The scatterplot shows the relationship between socioeconomic
status measured as the percentage of children in a neighborhood receiving reduced-fee lunches at
school (lunch) and the percentage of bike riders in the neighborhood wearing helmets (helmet).
The average percentage of children receiving reduced-fee lunches is 30.8% with a standard deviation
of 26.7% and the average percentage of bike riders wearing helmets is 38.8% with a standard
deviation of 16.9%.

(a) If the R2 for the least-squares regression line for
these data is 72%, what is the correlation between
lunch and helmet?

(b) Calculate the slope and intercept for the least-
squares regression line for these data.

(c) Interpret the intercept of the least-squares regres-
sion line in the context of the application.

(d) Interpret the slope of the least-squares regression
line in the context of the application.

(e) What would the value of the residual be for a
neighborhood where 40% of the children receive
reduced-fee lunches and 40% of the bike riders
wear helmets? Interpret the meaning of this resid-
ual in the context of the application.
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5.5.3 Types of outliers in linear regression

5.22 Outliers, Part I. Identify the outliers in the scatterplots shown below, and determine
what type of outliers they are. Explain your reasoning.
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(c)

5.23 Outliers, Part II. Identify the outliers in the scatterplots shown below and determine
what type of outliers they are. Explain your reasoning.
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(c)

5.24 Crawling babies, Part II. Exercise 5.12 introduces data on the average monthly tem-
perature during the month babies first try to crawl (about 6 months after birth) and the average
first crawling age for babies born in a given month. A scatterplot of these two variables reveals a
potential outlying month when the average temperature is about 53◦F and average crawling age
is about 28.5 weeks. Does this point have high leverage? Is it an influential point?

5.25 Urban homeowners, Part I. The scatterplot below shows the percent of families who
own their home vs. the percent of the population living in urban areas in 2010.21 There are 52
observations, each corresponding to a state in the US. Puerto Rico and District of Columbia are
also included.

(a) Describe the relationship between the per-
cent of families who own their home and the
percent of the population living in urban ar-
eas in 2010.

(b) The outlier at the bottom right corner is Dis-
trict of Columbia, where 100% of the pop-
ulation is considered urban. What type of
outlier is this observation?

40 50 60 70 80 90 100

45

50

55

60

65

70

% urban population

%
 w

ho
 o

w
n 

ho
m

e

5.5.4 Inference for linear regression

Visually check the conditions for fitting a least squares regression line, but you do not need to
report these conditions in your solutions unless it is requested.

21United States Census Bureau, 2010 Census Urban and Rural Classification and Urban Area Criteria
and Housing Characteristics: 2010.

http://www.census.gov/geo/www/ua/2010urbanruralclass.html
http://www.census.gov/prod/cen2010/briefs/c2010br-07.pdf
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5.26 Nutrition at Starbucks, Part II. Exer-
cise 5.18 introduced a data set on nutrition informa-
tion on Starbucks food menu items. Based on the
scatterplot and the residual plot provided, describe the
relationship between the protein content and calories
of these menu items, and determine if a simple linear
model is appropriate to predict amount of protein from
the number of calories.
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5.27 Grades and TV. Data were collected on the
number of hours per week students watch TV and the
grade they earned in a biology class on a 100 point scale.
Based on the scatterplot and the residual plot provided,
describe the relationship between the two variables, and
determine if a simple linear model is appropriate to
predict a student’s grade from the number of hours per
week the student watches TV.
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5.28 Beer and blood alcohol content. Many people believe that gender, weight, drinking
habits, and many other factors are much more important in predicting blood alcohol content (BAC)
than simply considering the number of drinks a person consumed. Here we examine data from
sixteen student volunteers at Ohio State University who each drank a randomly assigned number
of cans of beer. These students were evenly divided between men and women, and they differed
in weight and drinking habits. Thirty minutes later, a police officer measured their blood alcohol
content (BAC) in grams of alcohol per deciliter of blood.22 The scatterplot and regression table
summarize the findings.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0127 0.0126 -1.00 0.3320

beers 0.0180 0.0024 7.48 0.0000

(a) Describe the relationship between the number of cans of beer and BAC.

(b) Write the equation of the regression line. Interpret the slope and intercept in context.

(c) Do the data provide strong evidence that drinking more cans of beer is associated with an
increase in blood alcohol? State the null and alternative hypotheses, report the p-value, and
state your conclusion.

(d) The correlation coefficient for number of cans of beer and BAC is 0.89. Calculate R2 and
interpret it in context.

(e) Suppose we visit a bar, ask people how many drinks they have had, and also take their BAC.
Do you think the relationship between number of drinks and BAC would be as strong as the
relationship found in the Ohio State study?

5.29 Body measurements, Part IV. The scatterplot and least squares summary below show
the relationship between weight measured in kilograms and height measured in centimeters of 507
physically active individuals.

Height (in cm)
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -105.0113 7.5394 -13.93 0.0000

height 1.0176 0.0440 23.13 0.0000

(a) Describe the relationship between height and weight.

(b) Write the equation of the regression line. Interpret the slope and intercept in context.

(c) Do the data provide strong evidence that an increase in height is associated with an increase
in weight? State the null and alternative hypotheses, report the p-value, and state your
conclusion.

(d) The correlation coefficient for height and weight is 0.72. Calculate R2 and interpret it in
context.

22J. Malkevitch and L.M. Lesser. For All Practical Purposes: Mathematical Literacy in Today’s World.
WH Freeman & Co, 2008.
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5.30 Husbands and wives, Part II. Exercise 5.6 presents a scatterplot displaying the rela-
tionship between husbands’ and wives’ ages in a random sample of 170 married couples in Britain,
where both partners’ ages are below 65 years. Given below is summary output of the least squares
fit for predicting wife’s age from husband’s age.

Husband's age (in years)
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)

20 40 60

20

40

60

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5740 1.1501 1.37 0.1730

age husband 0.9112 0.0259 35.25 0.0000
df = 168

(a) We might wonder, is the age difference between husbands and wives consistent across ages?
If this were the case, then the slope parameter would be β1 = 1. Use the information above
to evaluate if there is strong evidence that the difference in husband and wife ages differs for
different ages.

(b) Write the equation of the regression line for predicting wife’s age from husband’s age.

(c) Interpret the slope and intercept in context.

(d) Given that R2 = 0.88, what is the correlation of ages in this data set?

(e) You meet a married man from Britain who is 55 years old. What would you predict his wife’s
age to be? How reliable is this prediction?

(f) You meet another married man from Britain who is 85 years old. Would it be wise to use the
same linear model to predict his wife’s age? Explain.

5.31 Husbands and wives, Part III. The scatterplot below summarizes husbands’ and wives’
heights in a random sample of 170 married couples in Britain, where both partners’ ages are below
65 years. Summary output of the least squares fit for predicting wife’s height from husband’s
height is also provided in the table.

Husband's height (in inches)
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70

Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.5755 4.6842 9.30 0.0000

height husband 0.2863 0.0686 4.17 0.0000

(a) Is there strong evidence that taller men marry taller women? State the hypotheses and include
any information used to conduct the test.

(b) Write the equation of the regression line for predicting wife’s height from husband’s height.

(c) Interpret the slope and intercept in the context of the application.

(d) Given that R2 = 0.09, what is the correlation of heights in this data set?

(e) You meet a married man from Britain who is 5’9” (69 inches). What would you predict his
wife’s height to be? How reliable is this prediction?

(f) You meet another married man from Britain who is 6’7” (79 inches). Would it be wise to use
the same linear model to predict his wife’s height? Why or why not?
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5.32 Urban homeowners, Part II. Exercise 5.25 gives a scatterplot displaying the relationship
between the percent of families that own their home and the percent of the population living in
urban areas. Below is a similar scatterplot, excluding District of Columbia, as well as the residuals
plot. There were 51 cases.

(a) For these data, R2 = 0.28. What is
the correlation? How can you tell if it
is positive or negative?

(b) Examine the residual plot. What do
you observe? Is a simple least squares
fit appropriate for these data?
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5.33 Babies. Is the gestational age (time between conception and birth) of a low birth-weight
baby useful in predicting head circumference at birth? Twenty-five low birth-weight babies were
studied at a Harvard teaching hospital; the investigators calculated the regression of head circum-
ference (measured in centimeters) against gestational age (measured in weeks). The estimated
regression line is ̂head circumference = 3.91 + 0.78× gestational age
(a) What is the predicted head circumference for a baby whose gestational age is 28 weeks?

(b) The standard error for the coefficient of gestational age is 0.35, which is associated with
df = 23. Does the model provide strong evidence that gestational age is significantly associated
with head circumference?



5.5. EXERCISES 259

5.34 Rate my professor. Some college students critique professors’ teaching at RateMyPro-
fessors.com, a web page where students anonymously rate their professors on quality, easiness,
and attractiveness. Using the self-selected data from this public forum, researchers examine the
relations between quality, easiness, and attractiveness for professors at various universities. In this
exercise we will work with a portion of these data that the researchers made publicly available.23

The scatterplot on the right shows the relation-
ship between teaching evaluation score (higher
score means better) and standardized beauty
score (a score of 0 means average, negative
score means below average, and a positive score
means above average) for a sample of 463 pro-
fessors. Given below are associated diagnostic
plots. Also given is a regression output for pre-
dicting teaching evaluation score from beauty
score.
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23J. Felton et al. “Web-based student evaluations of professors: the relations between perceived quality,
easiness and sexiness”. In: Assessment & Evaluation in Higher Education 29.1 (2004), pp. 91–108.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.010 0.0255 157.21 0.0000

beauty Cell 1 0.0322 4.13 0.0000

(a) Given that the average standardized beauty score is -0.0883 and average teaching evaluation
score is 3.9983, calculate the slope. Alternatively, the slope may be computed using just the
information provided in the model summary table.

(b) Do these data provide convincing evidence that the slope of the relationship between teaching
evaluation and beauty is positive? Explain your reasoning.

(c) List the conditions required for linear regression and check if each one is satisfied for this
model.



Chapter 6

Multiple and logistic regression

The principles of simple linear regression lay the foundation for more sophisticated re-
gression methods used in a wide range of challenging settings. In Chapter 6, we explore
multiple regression, which introduces the possibility of more than one predictor, and logistic
regression, a technique for predicting categorical outcomes with two possible categories.

6.1 Introduction to multiple regression

Multiple regression extends simple two-variable regression to the case that still has one re-
sponse but many predictors (denoted x1, x2, x3, ...). The method is motivated by scenarios
where many variables may be simultaneously connected to an output.

We will consider Ebay auctions of a video game called Mario Kart for the Nintendo
Wii. The outcome variable of interest is the total price of an auction, which is the highest
bid plus the shipping cost. We will try to determine how total price is related to each char-
acteristic in an auction while simultaneously controlling for other variables. For instance,
all other characteristics held constant, are longer auctions associated with higher or lower
prices? And, on average, how much more do buyers tend to pay for additional Wii wheels
(plastic steering wheels that attach to the Wii controller) in auctions? Multiple regression
will help us answer these and other questions.

The data set mario kart includes results from 141 auctions.1 Four observations from
this data set are shown in Table 6.1, and descriptions for each variable are shown in Ta-
ble 6.2. Notice that the condition and stock photo variables are indicator variables. For
instance, the cond new variable takes value 1 if the game up for auction is new and 0 if it is
used. Using indicator variables in place of category names allows for these variables to be
directly used in regression. See Section 5.2.6 for additional details. Multiple regression also
allows for categorical variables with many levels, though we do not have any such variables
in this analysis, and we save these details for a second or third course.

1Diez DM, Barr CD, and Çetinkaya-Rundel M. 2012. openintro: OpenIntro data sets and supplemental
functions. cran.r-project.org/web/packages/openintro.
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price cond new stock photo duration wheels
1 51.55 1 1 3 1
2 37.04 0 1 7 1
...

...
...

...
...

...
140 38.76 0 0 7 0
141 54.51 1 1 1 2

Table 6.1: Four observations from the mario kart data set.

variable description

price final auction price plus shipping costs, in US dollars
cond new a coded two-level categorical variable, which takes value 1 when the

game is new and 0 if the game is used
stock photo a coded two-level categorical variable, which takes value 1 if the

primary photo used in the auction was a stock photo and 0 if the
photo was unique to that auction

duration the length of the auction, in days, taking values from 1 to 10
wheels the number of Wii wheels included with the auction (a Wii wheel

is a plastic racing wheel that holds the Wii controller and is an
optional but helpful accessory for playing Mario Kart)

Table 6.2: Variables and their descriptions for the mario kart data set.

6.1.1 A single-variable model for the Mario Kart data

Let’s fit a linear regression model with the game’s condition as a predictor of auction price.
The model may be written as

p̂rice = 42.87 + 10.90× cond new

Results of this model are shown in Table 6.3 and a scatterplot for price versus game con-
dition is shown in Figure 6.4.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.8711 0.8140 52.67 0.0000
cond new 10.8996 1.2583 8.66 0.0000

df = 139

Table 6.3: Summary of a linear model for predicting auction price based
on game condition.

⊙
Guided Practice 6.1 Examine Figure 6.4. Does the linear model seem reasonable?2

2Yes. Constant variability, nearly normal residuals, and linearity all appear reasonable.
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Figure 6.4: Scatterplot of the total auction price against the game’s condi-
tion. The least squares line is also shown.

 Example 6.2 Interpret the coefficient for the game’s condition in the model. Is this
coefficient significantly different from 0?

Note that cond new is a two-level categorical variable that takes value 1 when the
game is new and value 0 when the game is used. So 10.90 means that the model
predicts an extra $10.90 for those games that are new versus those that are used.
(See Section 5.2.6 for a review of the interpretation for two-level categorical predictor
variables.) Examining the regression output in Table 6.3, we can see that the p-
value for cond new is very close to zero, indicating there is strong evidence that the
coefficient is different from zero when using this simple one-variable model.

6.1.2 Including and assessing many variables in a model

Sometimes there are underlying structures or relationships between predictor variables.
For instance, new games sold on Ebay tend to come with more Wii wheels, which may
have led to higher prices for those auctions. We would like to fit a model that includes all
potentially important variables simultaneously. This would help us evaluate the relationship
between a predictor variable and the outcome while controlling for the potential influence
of other variables. This is the strategy used in multiple regression. While we remain
cautious about making any causal interpretations using multiple regression, such models
are a common first step in providing evidence of a causal connection.

We want to construct a model that accounts for not only the game condition, as in Sec-
tion 6.1.1, but simultaneously accounts for three other variables: stock photo, duration,
and wheels.

̂price = β0 + β1 × cond new + β2 × stock photo

+ β3 × duration + β4 × wheels

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 (6.3)
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In this equation, y represents the total price, x1 indicates whether the game is new, x2

indicates whether a stock photo was used, x3 is the duration of the auction, and x4 is the
number of Wii wheels included with the game. Just as with the single predictor case, a
multiple regression model may be missing important components or it might not precisely
represent the relationship between the outcome and the available explanatory variables.
While no model is perfect, we wish to explore the possibility that this one may fit the data
reasonably well.

We estimate the parameters β0, β1, ..., β4 in the same way as we did in the case of a
single predictor. We select b0, b1, ..., b4 that minimize the sum of the squared residuals:

SSE = e2
1 + e2

2 + · · ·+ e2
141 =

141∑
i=1

e2
i =

141∑
i=1

(yi − ŷi)2
(6.4)

Here there are 141 residuals, one for each observation. We typically use a computer to
minimize the sum in Equation (6.4) and compute point estimates, as shown in the sample
output in Table 6.5. Using this output, we identify the point estimates bi of each βi, just
as we did in the one-predictor case.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.2110 1.5140 23.92 0.0000
cond new 5.1306 1.0511 4.88 0.0000

stock photo 1.0803 1.0568 1.02 0.3085
duration -0.0268 0.1904 -0.14 0.8882

wheels 7.2852 0.5547 13.13 0.0000
df = 136

Table 6.5: Output for the regression model where price is the outcome
and cond new, stock photo, duration, and wheels are the predictors.

Multiple regression model
A multiple regression model is a linear model with many predictors. In general,
we write the model as

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk

when there are k predictors. We often estimate the βi parameters using a computer.

⊙
Guided Practice 6.5 Write out the model in Equation (6.3) using the point
estimates from Table 6.5. How many predictors are there in this model?3

⊙
Guided Practice 6.6 What does β4, the coefficient of variable x4 (Wii wheels),
represent? What is the point estimate of β4?4

3ŷ = 36.21 + 5.13x1 + 1.08x2 − 0.03x3 + 7.29x4, and there are k = 4 predictor variables.
4It is the average difference in auction price for each additional Wii wheel included when holding the

other variables constant. The point estimate is b4 = 7.29.
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⊙
Guided Practice 6.7 Compute the residual of the first observation in Table 6.1
on page 262 using the equation identified in Guided Practice 6.5. 5

 Example 6.8 We estimated a coefficient for cond new in Section 6.1.1 of b1 = 10.90
with a standard error of SEb1 = 1.26 when using simple linear regression. Why might
there be a difference between that estimate and the one in the multiple regression
setting?

If we examined the data carefully, we would see that some predictors are correlated.
For instance, when we estimated the connection of the outcome price and predictor
cond new using simple linear regression, we were unable to control for other variables
like the number of Wii wheels included in the auction. That model was biased by the
confounding variable wheels. When we use both variables, this particular underlying
and unintentional bias is reduced or eliminated (though bias from other confounding
variables may still remain).

Example 6.8 describes a common issue in multiple regression: correlation among pre-
dictor variables. We say the two predictor variables are collinear (pronounced as co-linear)
when they are correlated, and this collinearity complicates model estimation. While it is
impossible to prevent collinearity from arising in observational data, experiments are usu-
ally designed to prevent predictors from being collinear.⊙

Guided Practice 6.9 The estimated value of the intercept is 36.21, and one might
be tempted to make some interpretation of this coefficient, such as, it is the model’s
predicted price when each of the variables take value zero: the game is used, the
primary image is not a stock photo, the auction duration is zero days, and there are
no wheels included. Is there any value gained by making this interpretation?6

6.1.3 Adjusted R2 as a better estimate of explained variance

We first used R2 in Section 5.2 to determine the amount of variability in the response that
was explained by the model:

R2 = 1− variability in residuals

variability in the outcome
= 1− V ar(ei)

V ar(yi)

where ei represents the residuals of the model and yi the outcomes. This equation remains
valid in the multiple regression framework, but a small enhancement can often be even
more informative.⊙

Guided Practice 6.10 The variance of the residuals for the model given in Guided
Practice 6.7 is 23.34, and the variance of the total price in all the auctions is 83.06.
Calculate R2 for this model.7

5ei = yi − ŷi = 51.55 − 49.62 = 1.93, where 49.62 was computed using the variables values from the
observation and the equation identified in Guided Practice 6.5.

6Three of the variables (cond new, stock photo, and wheels) do take value 0, but the auction duration
is always one or more days. If the auction is not up for any days, then no one can bid on it! That means
the total auction price would always be zero for such an auction; the interpretation of the intercept in this
setting is not insightful.

7R2 = 1− 23.34
83.06

= 0.719.
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This strategy for estimating R2 is acceptable when there is just a single variable.
However, it becomes less helpful when there are many variables. The regular R2 is actually
a biased estimate of the amount of variability explained by the model. To get a better
estimate, we use the adjusted R2.

Adjusted R2 as a tool for model assessment
The adjusted R2 is computed as

R2
adj = 1− V ar(ei)/(n− k − 1)

V ar(yi)/(n− 1)
= 1− V ar(ei)

V ar(yi)
× n− 1

n− k − 1

where n is the number of cases used to fit the model and k is the number of
predictor variables in the model.

Because k is never negative, the adjusted R2 will be smaller – often times just a
little smaller – than the unadjusted R2. The reasoning behind the adjusted R2 lies in the
degrees of freedom associated with each variance.8

⊙
Guided Practice 6.11 There were n = 141 auctions in the mario kart data set
and k = 4 predictor variables in the model. Use n, k, and the variances from Guided
Practice 6.10 to calculate R2

adj for the Mario Kart model.9

⊙
Guided Practice 6.12 Suppose you added another predictor to the model, but
the variance of the errors V ar(ei) didn’t go down. What would happen to the R2?
What would happen to the adjusted R2? 10

6.2 Model selection

The best model is not always the most complicated. Sometimes including variables that
are not evidently important can actually reduce the accuracy of predictions. In this section
we discuss model selection strategies, which will help us eliminate from the model variables
that are less important.

In this section, and in practice, the model that includes all available explanatory
variables is often referred to as the full model. Our goal is to assess whether the full
model is the best model. If it isn’t, we want to identify a smaller model that is preferable.

8In multiple regression, the degrees of freedom associated with the variance of the estimate of the
residuals is n−k−1, not n−1. For instance, if we were to make predictions for new data using our current
model, we would find that the unadjusted R2 is an overly optimistic estimate of the reduction in variance
in the response, and using the degrees of freedom in the adjusted R2 formula helps correct this bias.

9R2
adj = 1− 23.34

83.06
× 141−1

141−4−1
= 0.711.

10The unadjusted R2 would stay the same and the adjusted R2 would go down.
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6.2.1 Identifying variables in the model that may not be helpful

Table 6.6 provides a summary of the regression output for the full model for the auction
data. The last column of the table lists p-values that can be used to assess hypotheses of
the following form:

H0: βi = 0 when the other explanatory variables are included in the model.

HA: βi 6= 0 when the other explanatory variables are included in the model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.2110 1.5140 23.92 0.0000
cond new 5.1306 1.0511 4.88 0.0000

stock photo 1.0803 1.0568 1.02 0.3085
duration -0.0268 0.1904 -0.14 0.8882

wheels 7.2852 0.5547 13.13 0.0000

R2
adj = 0.7108 df = 136

Table 6.6: The fit for the full regression model, including the adjusted R2.

 Example 6.13 The coefficient of cond new has a t test statistic of T = 4.88 and a
p-value for its corresponding hypotheses (H0 : β1 = 0, HA : β1 6= 0) of about zero.
How can this be interpreted?

If we keep all the other variables in the model and add no others, then there is strong
evidence that a game’s condition (new or used) has a real relationship with the total
auction price.

 Example 6.14 Is there strong evidence that using a stock photo is related to the
total auction price?

The t test statistic for stock photo is T = 1.02 and the p-value is about 0.31. After
accounting for the other predictors, there is not strong evidence that using a stock
photo in an auction is related to the total price of the auction. We might consider
removing the stock photo variable from the model.⊙
Guided Practice 6.15 Identify the p-values for both the duration and wheels

variables in the model. Is there strong evidence supporting the connection of these
variables with the total price in the model?11

There is not statistically significant evidence that either the stock photo or duration
variables contribute meaningfully to the model. Next we consider common strategies for
pruning such variables from a model.

11The p-value for the auction duration is 0.8882, which indicates that there is not statistically significant
evidence that the duration is related to the total auction price when accounting for the other variables.
The p-value for the Wii wheels variable is about zero, indicating that this variable is associated with the
total auction price.
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TIP: Using adjusted R2 instead of p-values for model selection
The adjusted R2 may be used as an alternative to p-values for model selection,
where a higher adjusted R2 represents a better model fit. For instance, we could
compare two models using their adjusted R2, and the model with the higher ad-
justed R2 would be preferred. This approach tends to include more variables in the
final model when compared to the p-value approach.

6.2.2 Two model selection strategies

Two common strategies for adding or removing variables in a multiple regression model
are called backward-selection and forward-selection. These techniques are often referred to
as stepwise model selection strategies, because they add or delete one variable at a time
as they “step” through the candidate predictors. We will discuss these strategies in the
context of the p-value approach. Alternatively, we could have employed an R2

adj approach.
The backward-elimination strategy starts with the model that includes all poten-

tial predictor variables. Variables are eliminated one-at-a-time from the model until only
variables with statistically significant p-values remain. The strategy within each elimina-
tion step is to drop the variable with the largest p-value, refit the model, and reassess the
inclusion of all variables.

 Example 6.16 Results corresponding to the full model for the mario kart data
are shown in Table 6.6. How should we proceed under the backward-elimination
strategy?

There are two variables with coefficients that are not statistically different from zero:
stock photo and duration. We first drop the duration variable since it has a larger
corresponding p-value, then we refit the model. A regression summary for the new
model is shown in Table 6.7.

In the new model, there is not strong evidence that the coefficient for stock photo

is different from zero, even though the p-value decreased slightly, and the other p-
values remain very small. Next, we again eliminate the variable with the largest
non-significant p-value, stock photo, and refit the model. The updated regression
summary is shown in Table 6.8.

In the latest model, we see that the two remaining predictors have statistically signif-
icant coefficients with p-values of about zero. Since there are no variables remaining
that could be eliminated from the model, we stop. The final model includes only the
cond new and wheels variables in predicting the total auction price:

ŷ = b0 + b1x1 + b4x4

= 36.78 + 5.58x1 + 7.23x4

where x1 represents cond new and x4 represents wheels.

An alternative to using p-values in model selection is to use the adjusted R2. At each
elimination step, we refit the model without each of the variables up for potential
elimination. For example, in the first step, we would fit four models, where each would
be missing a different predictor. If one of these smaller models has a higher adjusted
R2 than our current model, we pick the smaller model with the largest adjusted R2.
We continue in this way until removing variables does not increase R2

adj . Had we
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used the adjusted R2 criteria, we would have kept the stock photo variable along
with the cond new and wheels variables.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.0483 0.9745 36.99 0.0000
cond new 5.1763 0.9961 5.20 0.0000

stock photo 1.1177 1.0192 1.10 0.2747
wheels 7.2984 0.5448 13.40 0.0000

R2
adj = 0.7128 df = 137

Table 6.7: The output for the regression model where price is the outcome
and the duration variable has been eliminated from the model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.7849 0.7066 52.06 0.0000
cond new 5.5848 0.9245 6.04 0.0000

wheels 7.2328 0.5419 13.35 0.0000

R2
adj = 0.7124 df = 138

Table 6.8: The output for the regression model where price is the outcome
and the duration and stock photo variables have been eliminated from the
model.

Notice that the p-value for stock photo changed a little from the full model (0.309)
to the model that did not include the duration variable (0.275). It is common for p-values
of one variable to change, due to collinearity, after eliminating a different variable. This
fluctuation emphasizes the importance of refitting a model after each variable elimination
step. The p-values tend to change dramatically when the eliminated variable is highly
correlated with another variable in the model.

The forward-selection strategy is the reverse of the backward-elimination technique.
Instead of eliminating variables one-at-a-time, we add variables one-at-a-time until we
cannot find any variables that present strong evidence of their importance in the model.

 Example 6.17 Construct a model for the mario kart data set using the forward-
selection strategy.

We start with the model that includes no variables. Then we fit each of the possible
models with just one variable. That is, we fit the model including just the cond new

predictor, then the model including just the stock photo variable, then a model with
just duration, and a model with just wheels. Each of the four models (yes, we fit
four models!) provides a p-value for the coefficient of the predictor variable. Out of
these four variables, the wheels variable had the smallest p-value. Since its p-value
is less than 0.05 (the p-value was smaller than 2e-16), we add the Wii wheels variable
to the model. Once a variable is added in forward-selection, it will be included in all
models considered as well as the final model.

Since we successfully found a first variable to add, we consider adding another. We fit
three new models: (1) the model including just the cond new and wheels variables
(output in Table 6.8), (2) the model including just the stock photo and wheels
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variables, and (3) the model including only the duration and wheels variables. Of
these models, the first had the lowest p-value for its new variable (the p-value corre-
sponding to cond new was 1.4e-08). Because this p-value is below 0.05, we add the
cond new variable to the model. Now the final model is guaranteed to include both
the condition and wheels variables.

We must then repeat the process a third time, fitting two new models: (1) the model
including the stock photo, cond new, and wheels variables (output in Table 6.7)
and (2) the model including the duration, cond new, and wheels variables. The
p-value corresponding to stock photo in the first model (0.275) was smaller than
the p-value corresponding to duration in the second model (0.682). However, since
this smaller p-value was not below 0.05, there was not strong evidence that it should
be included in the model. Therefore, neither variable is added and we are finished.

The final model is the same as that arrived at using the backward-selection strategy.

 Example 6.18 As before, we could have used the R2
adj criteria instead of examining

p-values in selecting variables for the model. Rather than look for variables with the
smallest p-value, we look for the model with the largest R2

adj . What would the result

of forward-selection be using the adjusted R2 approach?

Using the forward-selection strategy, we start with the model with no predictors.
Next we look at each model with a single predictor. If one of these models has a
larger R2

adj than the model with no variables, we use this new model. We repeat this
procedure, adding one variable at a time, until we cannot find a model with a larger
R2
adj . If we had done the forward-selection strategy using R2

adj , we would have arrived
at the model including cond new, stock photo, and wheels, which is a slightly larger
model than we arrived at using the p-value approach and the same model we arrived
at using the adjusted R2 and backwards-elimination.

Model selection strategies
The backward-elimination strategy begins with the largest model and eliminates
variables one-by-one until we are satisfied that all remaining variables are impor-
tant to the model. The forward-selection strategy starts with no variables included
in the model, then it adds in variables according to their importance until no other
important variables are found.

There is no guarantee that the backward-elimination and forward-selection strategies
will arrive at the same final model using the p-value or adjusted R2 methods. If the
backwards-elimination and forward-selection strategies are both tried and they arrive at
different models, choose the model with the larger R2

adj as a tie-breaker; other tie-break
options exist but are beyond the scope of this book.

It is generally acceptable to use just one strategy, usually backward-elimination with
either the p-value or adjusted R2 criteria. However, before reporting the model results, we
must verify the model conditions are reasonable.
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Figure 6.9: A normal probability plot of the residuals is helpful in identi-
fying observations that might be outliers.

6.3 Checking model assumptions using graphs

Multiple regression methods using the model

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk

generally depend on the following four assumptions:

1. the residuals of the model are nearly normal,

2. the variability of the residuals is nearly constant,

3. the residuals are independent, and

4. each variable is linearly related to the outcome.

Simple and effective plots can be used to check each of these assumptions. We will consider
the model for the auction data that uses the game condition and number of wheels as
predictors. The plotting methods presented here may also be used to check the conditions
for the models introduced in Chapter 5.

Normal probability plot. A normal probability plot of the residuals is shown in Fig-
ure 6.9. While the plot exhibits some minor irregularities, there are no outliers that
might be cause for concern. In a normal probability plot for residuals, we tend to
be most worried about residuals that appear to be outliers, since these indicate long
tails in the distribution of residuals.

Absolute values of residuals against fitted values. A plot of the absolute value of
the residuals against their corresponding fitted values (ŷi) is shown in Figure 6.10.
This plot is helpful to check the condition that the variance of the residuals is ap-
proximately constant. We don’t see any obvious deviations from constant variance in
this example.
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Figure 6.10: Comparing the absolute value of the residuals against the fitted
values (ŷi) is helpful in identifying deviations from the constant variance
assumption.

Residuals in order of their data collection. A plot of the residuals in the order their
corresponding auctions were observed is shown in Figure 6.11. Such a plot is helpful in
identifying any connection between cases that are close to one another, e.g. we could
look for declining prices over time or if there was a time of the day when auctions
tended to fetch a higher price. Here we see no structure that indicates a problem.12

Residuals against each predictor variable. We consider a plot of the residuals against
the cond new variable and the residuals against the wheels variable. These plots are
shown in Figure 6.12. For the two-level condition variable, we are guaranteed not
to see any remaining trend, and instead we are checking that the variability doesn’t
fluctuate across groups. In this example, when we consider the residuals against the
wheels variable, we see some possible structure. There appears to be curvature in
the residuals, indicating the relationship is probably not linear.

It is necessary to summarize diagnostics for any model fit. If the diagnostics support
the model assumptions, this would improve credibility in the findings. If the diagnostic
assessment shows remaining underlying structure in the residuals, we should try to adjust
the model to account for that structure. If we are unable to do so, we may still report
the model but must also note its shortcomings. In the case of the auction data, we report
that there may be a nonlinear relationship between the total price and the number of
wheels included for an auction. This information would be important to buyers and sellers;
omitting this information could be a setback to the very people who the model might assist.

12An especially rigorous check would use time series methods. For instance, we could check whether
consecutive residuals are correlated. Doing so with these residuals yields no statistically significant corre-
lations.
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Figure 6.11: Plotting residuals in the order that their corresponding ob-
servations were collected helps identify connections between successive ob-
servations. If it seems that consecutive observations tend to be close to
each other, this indicates the independence assumption of the observations
would fail.
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Figure 6.12: In the two-level variable for the game’s condition, we check for
differences in distribution shape or variability. For numerical predictors,
we also check for trends or other structure. We see some slight bowing in
the residuals against the wheels variable.
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“All models are wrong, but some are useful” -George E.P. Box
The truth is that no model is perfect. However, even imperfect models can be
useful. Reporting a flawed model can be reasonable so long as we are clear and
report the model’s shortcomings.

Caution: Don’t report results when assumptions are grossly violated
While there is a little leeway in model assumptions, don’t go too far. If model as-
sumptions are very clearly violated, consider a new model, even if it means learning
more statistical methods or hiring someone who can help.

TIP: Confidence intervals in multiple regression
Confidence intervals for coefficients in multiple regression can be computed using

the same formula as in the single predictor model:

bi ± t?dfSEbi

where t?df is the appropriate t value corresponding to the confidence level and model
degrees of freedom, df = n− k − 1.

6.4 Logistic regression

In this section we introduce logistic regression as a tool for building models when there is
a categorical response variable with two levels. Logistic regression is a type of generalized
linear model (GLM) for response variables where regular multiple regression does not
work very well. In particular, the response variable in these settings often takes a form
where residuals look completely different from the normal distribution.

GLMs can be thought of as a two-stage modeling approach. We first model the
response variable using a probability distribution, such as the binomial or Poisson distri-
bution. Second, we model the parameter of the distribution using a collection of predictors
and a special form of multiple regression.

In Section 6.4 we will revisit the email data set from Chapter 1. These emails were
collected from a single email account, and we will work on developing a basic spam filter
using these data. The response variable, spam, has been encoded to take value 0 when a
message is not spam and 1 when it is spam. Our task will be to build an appropriate model
that classifies messages as spam or not spam using email characteristics coded as predictor
variables. While this model will not be the same as those used in large-scale spam filters,
it shares many of the same features.
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variable description

spam Specifies whether the message was spam.
to multiple An indicator variable for if more than one person was listed in the To field

of the email.
cc An indicator for if someone was CCed on the email.
attach An indicator for if there was an attachment, such as a document or image.
dollar An indicator for if the word “dollar” or dollar symbol ($) appeared in the

email.
winner An indicator for if the word “winner” appeared in the email message.
inherit An indicator for if the word “inherit” (or a variation, like “inheritance”)

appeared in the email.
password An indicator for if the word “password” was present in the email.
format Indicates if the email contained special formatting, such as bolding, tables,

or links
re subj Indicates whether “Re:” was included at the start of the email subject.
exclaim subj Indicates whether any exclamation point was included in the email subject.

Table 6.13: Descriptions for 11 variables in the email data set. Notice that
all of the variables are indicator variables, which take the value 1 if the
specified characteristic is present and 0 otherwise.

6.4.1 Email data

The email data set was first presented in Chapter 1 with a relatively small number of
variables. In fact, there are many more variables available that might be useful for classi-
fying spam. Descriptions of these variables are presented in Table 6.13. The spam variable
will be the outcome, and the other 10 variables will be the model predictors. While we
have limited the predictors used in this section to be categorical variables (where many
are represented as indicator variables), numerical predictors may also be used in logistic
regression. See the footnote for an additional discussion on this topic.13

6.4.2 Modeling the probability of an event

TIP: Notation for a logistic regression model
The outcome variable for a GLM is denoted by Yi, where the index i is used to
represent observation i. In the email application, Yi will be used to represent
whether email i is spam (Yi = 1) or not (Yi = 0).

The predictor variables are represented as follows: x1,i is the value of variable 1 for
observation i, x2,i is the value of variable 2 for observation i, and so on.

Logistic regression is a generalized linear model where the outcome is a two-level
categorical variable. The outcome, Yi, takes the value 1 (in our application, this represents
a spam message) with probability pi and the value 0 with probability 1 − pi. It is the
probability pi that we model in relation to the predictor variables.

13Recall from Chapter 5 that if outliers are present in predictor variables, the corresponding observations
may be especially influential on the resulting model. This is the motivation for omitting the numerical
variables, such as the number of characters and line breaks in emails, that we saw in Chapter 1. These
variables exhibited extreme skew. We could resolve this issue by transforming these variables (e.g. using a
log-transformation), but we will omit this further investigation for brevity.
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Figure 6.14: Values of pi against values of logit(pi).

The logistic regression model relates the probability an email is spam (pi) to the
predictors x1,i, x2,i, ..., xk,i through a framework much like that of multiple regression:

transformation(pi) = β0 + β1x1,i + β2x2,i + · · ·βkxk,i (6.19)

We want to choose a transformation in Equation (6.19) that makes practical and mathe-
matical sense. For example, we want a transformation that makes the range of possibilities
on the left hand side of Equation (6.19) equal to the range of possibilities for the right hand
side; if there was no transformation for this equation, the left hand side could only take
values between 0 and 1, but the right hand side could take values outside of this range. A
common transformation for pi is the logit transformation, which may be written as

logit(pi) = loge

(
pi

1− pi

)

The logit transformation is shown in Figure 6.14. Below, we rewrite Equation (6.19) using
the logit transformation of pi:

loge

(
pi

1− pi

)
= β0 + β1x1,i + β2x2,i + · · ·+ βkxk,i

In our spam example, there are 10 predictor variables, so k = 10. This model isn’t very
intuitive, but it still has some resemblance to multiple regression, and we can fit this model
using software. In fact, once we look at results from software, it will start to feel like we’re
back in multiple regression, even if the interpretation of the coefficients is more complex.
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 Example 6.20 Here we create a spam filter with a single predictor: to multiple.
This variable indicates whether more than one email address was listed in the To field
of the email. The following logistic regression model was fit using statistical software:

log

(
pi

1− pi

)
= −2.12− 1.81× to multiple

If an email is randomly selected and it has just one address in the To field, what is
the probability it is spam? What if more than one address is listed in the To field?

If there is only one email in the To field, then to multiple takes value 0 and the

right side of the model equation equals -2.12. Solving for pi:
e−2.12

1+e−2.12 = 0.11. Just as
we labeled a fitted value of yi with a “hat” in single-variable and multiple regression,
we will do the same for this probability: p̂i = 0.11.

If there is more than one address listed in the To field, then the right side of the model
equation is −2.12− 1.81× 1 = −3.93, which corresponds to a probability p̂i = 0.02.

Notice that we could examine -2.12 and -3.93 in Figure 6.14 to estimate the probability
before formally calculating the value.

To convert from values on the regression-scale (e.g. -2.12 and -3.93 in Example 6.20),
use the following formula, which is the result of solving for pi in the regression model:

pi =
eβ0+β1x1,i+···+βkxk,i

1 + eβ0+β1x1,i+···+βkxk,i

As with most applied data problems, we substitute the point estimates for the parameters
(the βi) so that we may make use of this formula. In Example 6.20, the probabilities were
calculated as

e−2.12

1 + e−2.12
= 0.11

e−2.12−1.81

1 + e−2.12−1.81
= 0.02

While the information about whether the email is addressed to multiple people is a help-
ful start in classifying email as spam or not, the probabilities of 11% and 2% are not
dramatically different, and neither provides very strong evidence about which particular
email messages are spam. To get more precise estimates, we’ll need to include many more
variables in the model.

We used statistical software to fit the logistic regression model with all ten predictors
described in Table 6.13. Like multiple regression, the result may be presented in a summary
table, which is shown in Table 6.15. The structure of this table is almost identical to that
of multiple regression; the only notable difference is that the p-values are calculated using
the normal distribution rather than the t distribution.

Just like multiple regression, we could trim some variables from the model using the
p-value. Using backwards elimination with a p-value cutoff of 0.05 (start with the full
model and trim the predictors with p-values greater than 0.05), we ultimately eliminate
the exclaim subj, dollar, inherit, and cc predictors. The remainder of this section will
rely on this smaller model, which is summarized in Table 6.16.⊙

Guided Practice 6.21 Examine the summary of the reduced model in Table 6.16,
and in particular, examine the to multiple row. Is the point estimate the same as
we found before, -1.81, or is it different? Explain why this might be.14

14The new estimate is different: -2.87. This new value represents the estimated coefficient when we are
also accounting for other variables in the logistic regression model.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8362 0.0962 -8.69 0.0000
to multiple -2.8836 0.3121 -9.24 0.0000

winner 1.7038 0.3254 5.24 0.0000
format -1.5902 0.1239 -12.84 0.0000
re subj -2.9082 0.3708 -7.84 0.0000

exclaim subj 0.1355 0.2268 0.60 0.5503
cc -0.4863 0.3054 -1.59 0.1113

attach 0.9790 0.2170 4.51 0.0000
dollar -0.0582 0.1589 -0.37 0.7144

inherit 0.2093 0.3197 0.65 0.5127
password -1.4929 0.5295 -2.82 0.0048

Table 6.15: Summary table for the full logistic regression model for the
spam filter example.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8595 0.0910 -9.44 0.0000
to multiple -2.8372 0.3092 -9.18 0.0000

winner 1.7370 0.3218 5.40 0.0000
format -1.5569 0.1207 -12.90 0.0000
re subj -3.0482 0.3630 -8.40 0.0000
attach 0.8643 0.2042 4.23 0.0000

password -1.4871 0.5290 -2.81 0.0049

Table 6.16: Summary table for the logistic regression model for the spam
filter, where variable selection has been performed.

Point estimates will generally change a little – and sometimes a lot – depending on
which other variables are included in the model. This is usually due to colinearity in the
predictor variables. We previously saw this in the Ebay auction example when we compared
the coefficient of cond new in a single-variable model and the corresponding coefficient
in the multiple regression model that used three additional variables (see Sections 6.1.1
and 6.1.2).

 Example 6.22 Spam filters are built to be automated, meaning a piece of software
is written to collect information about emails as they arrive, and this information is
put in the form of variables. These variables are then put into an algorithm that
uses a statistical model, like the one we’ve fit, to classify the email. Suppose we
write software for a spam filter using the reduced model shown in Table 6.16. If
an incoming email has the word “winner” in it, will this raise or lower the model’s
calculated probability that the incoming email is spam?

The estimated coefficient of winner is positive (1.7370). A positive coefficient esti-
mate in logistic regression, just like in multiple regression, corresponds to a positive
association between the predictor and response variables when accounting for the
other variables in the model. Since the response variable takes value 1 if an email is
spam and 0 otherwise, the positive coefficient indicates that the presence of “winner”
in an email raises the model probability that the message is spam.
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 Example 6.23 Suppose the same email from Example 6.22 was in HTML format,
meaning the format variable took value 1. Does this characteristic increase or de-
crease the probability that the email is spam according to the model?

Since HTML corresponds to a value of 1 in the format variable and the coefficient of
this variable is negative (-1.5569), this would lower the probability estimate returned
from the model.

6.4.3 Practical decisions in the email application

Examples 6.22 and 6.23 highlight a key feature of logistic and multiple regression. In the
spam filter example, some email characteristics will push an email’s classification in the
direction of spam while other characteristics will push it in the opposite direction.

If we were to implement a spam filter using the model we have fit, then each future
email we analyze would fall into one of three categories based on the email’s characteristics:

1. The email characteristics generally indicate the email is not spam, and so the resulting
probability that the email is spam is quite low, say, under 0.05.

2. The characteristics generally indicate the email is spam, and so the resulting proba-
bility that the email is spam is quite large, say, over 0.95.

3. The characteristics roughly balance each other out in terms of evidence for and against
the message being classified as spam. Its probability falls in the remaining range,
meaning the email cannot be adequately classified as spam or not spam.

If we were managing an email service, we would have to think about what should be
done in each of these three instances. In an email application, there are usually just two
possibilities: filter the email out from the regular inbox and put it in a “spambox”, or let
the email go to the regular inbox.⊙

Guided Practice 6.24 The first and second scenarios are intuitive. If the evidence
strongly suggests a message is not spam, send it to the inbox. If the evidence strongly
suggests the message is spam, send it to the spambox. How should we handle emails
in the third category?15

⊙
Guided Practice 6.25 Suppose we apply the logistic model we have built as a
spam filter and that 100 messages are placed in the spambox over 3 months. If we
used the guidelines above for putting messages into the spambox, about how many
legitimate (non-spam) messages would you expect to find among the 100 messages?16

Almost any classifier will have some error. In the spam filter guidelines above, we
have decided that it is okay to allow up to 5% of the messages in the spambox to be real
messages. If we wanted to make it a little harder to classify messages as spam, we could
use a cutoff of 0.99. This would have two effects. Because it raises the standard for what
can be classified as spam, it reduces the number of good emails that are classified as spam.

15In this particular application, we should err on the side of sending more mail to the inbox rather than
mistakenly putting good messages in the spambox. So, in summary: emails in the first and last categories
go to the regular inbox, and those in the second scenario go to the spambox.

16First, note that we proposed a cutoff for the predicted probability of 0.95 for spam. In a worst case
scenario, all the messages in the spambox had the minimum probability equal to about 0.95. Thus, we
should expect to find about 5 or fewer legitimate messages among the 100 messages placed in the spambox.
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However, it will also fail to correctly classify an increased fraction of spam messages. No
matter the complexity and the confidence we might have in our model, these practical
considerations are absolutely crucial to making a helpful spam filter. Without them, we
could actually do more harm than good by using our statistical model.

6.4.4 Diagnostics for the email classifier

Logistic regression conditions
There are two key conditions for fitting a logistic regression model:

1. Each predictor xi is linearly related to logit(pi) if all other predictors are
held constant.

2. Each outcome Yi is independent of the other outcomes.

The first condition of the logistic regression model is not easily checked without a
fairly sizable amount of data. Luckily, we have 3,921 emails in our data set! Let’s first
visualize these data by plotting the true classification of the emails against the model’s
fitted probabilities, as shown in Figure 6.17. The vast majority of emails (spam or not)
still have fitted probabilities below 0.5.

Predicted probability

0.0 0.2 0.4 0.6 0.8 1.0

0 (not spam)

1 (spam)

Figure 6.17: The predicted probability that each of the 3,912 emails is spam
is classified by their grouping, spam or not. Noise (small, random vertical
shifts) have been added to each point so that points with nearly identical
values aren’t plotted exactly on top of one another. This makes it possible
to see more observations.

This may at first seem very discouraging: we have fit a logistic model to create a spam
filter, but no emails have a fitted probability of being spam above 0.75. Don’t despair; we
will discuss ways to improve the model through the use of better variables in Section 6.4.5.

We’d like to assess the quality of our model. For example, we might ask: if we look
at emails that we modeled as having a 10% chance of being spam, do we find about 10%
of them actually are spam? To help us out, we’ll borrow an advanced statistical method
called natural splines that estimates the local probability over the region 0.00 to 0.75
(the largest predicted probability was 0.73, so we avoid extrapolating). All you need to
know about natural splines to understand what we are doing is that they are used to fit
flexible lines rather than straight lines.
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Predicted probability

Tr
ut

h What we expect if
the logistic model

is reasonable

0.0 0.2 0.4 0.6 0.8 1.0

0 (not spam)

0.2  

0.4  

0.6  

0.8  

1 (spam)

Locally−estimated
probabilities with

confidence bounds

The bounds become wide
because not much data
are found this far right

Figure 6.18: The solid black line provides the empirical estimate of the prob-
ability for observations based on their predicted probabilities (confidence
bounds are also shown for this line), which is fit using natural splines. A
small amount of noise was added to the observations in the plot to allow
more observations to be seen.

The curve fit using natural splines is shown in Figure 6.18 as a solid black line. If
the logistic model fits well, the curve should closely follow the dashed y = x line. We
have added shading to represent the confidence bound for the curved line to clarify what
fluctuations might plausibly be due to chance. Even with this confidence bound, there
are weaknesses in the first model assumption. The solid curve and its confidence bound
dips below the dashed line from about 0.1 to 0.3, and then it drifts above the dashed line
from about 0.35 to 0.55. These deviations indicate the model relating the parameter to the
predictors does not closely resemble the true relationship.

We could evaluate the second logistic regression model assumption – independence of
the outcomes – using the model residuals. The residuals for a logistic regression model
are calculated the same way as with multiple regression: the observed outcome minus the
expected outcome. For logistic regression, the expected value of the outcome is the fitted
probability for the observation, and the residual may be written as

ei = Yi − p̂i

We could plot these residuals against a variety of variables or in their order of collection,
as we did with the residuals in multiple regression. However, since the model will need to
be revised to effectively classify spam and you have already seen similar residual plots in
Section 6.3, we won’t investigate the residuals here.
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6.4.5 Improving the set of variables for a spam filter

If we were building a spam filter for an email service that managed many accounts (e.g.
Gmail or Hotmail), we would spend much more time thinking about additional variables
that could be useful in classifying emails as spam or not. We also would use transformations
or other techniques that would help us include strongly skewed numerical variables as
predictors.

Take a few minutes to think about additional variables that might be useful in iden-
tifying spam. Below is a list of variables we think might be useful:

(1) An indicator variable could be used to represent whether there was prior two-way
correspondence with a message’s sender. For instance, if you sent a message to
john@example.com and then John sent you an email, this variable would take value
1 for the email that John sent. If you had never sent John an email, then the variable
would be set to 0.

(2) A second indicator variable could utilize an account’s past spam flagging information.
The variable could take value 1 if the sender of the message has previously sent
messages flagged as spam.

(3) A third indicator variable could flag emails that contain links included in previous
spam messages. If such a link is found, then set the variable to 1 for the email.
Otherwise, set it to 0.

The variables described above take one of two approaches. Variable (1) is specially designed
to capitalize on the fact that spam is rarely sent between individuals that have two-way
communication. Variables (2) and (3) are specially designed to flag common spammers or
spam messages. While we would have to verify using the data that each of the variables is
effective, these seem like promising ideas.

Table 6.19 shows a contingency table for spam and also for the new variable described
in (1) above. If we look at the 1,090 emails where there was correspondence with the sender
in the preceding 30 days, not one of these message was spam. This suggests variable (1)
would be very effective at accurately classifying some messages as not spam. With this
single variable, we would be able to send about 28% of messages through to the inbox with
confidence that almost none are spam.

prior correspondence
no yes Total

spam 367 0 367
not spam 2464 1090 3554

Total 2831 1090 3921

Table 6.19: A contingency table for spam and a new variable that represents
whether there had been correspondence with the sender in the preceding
30 days.

The variables described in (2) and (3) would provide an excellent foundation for dis-
tinguishing messages coming from known spammers or messages that take a known form
of spam. To utilize these variables, we would need to build databases: one holding email
addresses of known spammers, and one holding URLs found in known spam messages. Our
access to such information is limited, so we cannot implement these two variables in this
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textbook. However, if we were hired by an email service to build a spam filter, these would
be important next steps.

In addition to finding more and better predictors, we would need to create a customized
logistic regression model for each email account. This may sound like an intimidating task,
but its complexity is not as daunting as it may at first seem. We’ll save the details for a
statistics course where computer programming plays a more central role.

For what is the extremely challenging task of classifying spam messages, we have made
a lot of progress. We have seen that simple email variables, such as the format, inclusion
of certain words, and other circumstantial characteristics, provide helpful information for
spam classification. Many challenges remain, from better understanding logistic regression
to carrying out the necessary computer programming, but completing such a task is very
nearly within your reach.
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6.5 Exercises

6.5.1 Introduction to multiple regression

6.1 Baby weights, Part I. The Child Health and Development Studies investigate a range of
topics. One study considered all pregnancies between 1960 and 1967 among women in the Kaiser
Foundation Health Plan in the San Francisco East Bay area. Here, we study the relationship
between smoking and weight of the baby. The variable smoke is coded 1 if the mother is a
smoker, and 0 if not. The summary table below shows the results of a linear regression model for
predicting the average birth weight of babies, measured in ounces, based on the smoking status of
the mother.17

Estimate Std. Error t value Pr(>|t|)
(Intercept) 123.05 0.65 189.60 0.0000

smoke -8.94 1.03 -8.65 0.0000

The variability within the smokers and non-smokers are about equal and the distributions are
symmetric. With these conditions satisfied, it is reasonable to apply the model. (Note that we
don’t need to check linearity since the predictor has only two levels.)

(a) Write the equation of the regression line.

(b) Interpret the slope in this context, and calculate the predicted birth weight of babies born to
smoker and non-smoker mothers.

(c) Is there a statistically significant relationship between the average birth weight and smoking?

6.2 Baby weights, Part II. Exercise 6.1 introduces a data set on birth weight of babies.
Another variable we consider is parity, which is 0 if the child is the first born, and 1 otherwise.
The summary table below shows the results of a linear regression model for predicting the average
birth weight of babies, measured in ounces, from parity.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 120.07 0.60 199.94 0.0000

parity -1.93 1.19 -1.62 0.1052

(a) Write the equation of the regression line.

(b) Interpret the slope in this context, and calculate the predicted birth weight of first borns and
others.

(c) Is there a statistically significant relationship between the average birth weight and parity?

17Child Health and Development Studies, Baby weights data set.

http://www.ma.hw.ac.uk/~stan/aod/library
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6.3 Baby weights, Part III. We considered the variables smoke and parity, one at a time, in
modeling birth weights of babies in Exercises 6.1 and 6.2. A more realistic approach to modeling
infant weights is to consider all possibly related variables at once. Other variables of interest
include length of pregnancy in days (gestation), mother’s age in years (age), mother’s height in
inches (height), and mother’s pregnancy weight in pounds (weight). Below are three observations
from this data set.

bwt gestation parity age height weight smoke

1 120 284 0 27 62 100 0
2 113 282 0 33 64 135 0
...

...
...

...
...

...
...

...
1236 117 297 0 38 65 129 0

The summary table below shows the results of a regression model for predicting the average birth
weight of babies based on all of the variables included in the data set.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -80.41 14.35 -5.60 0.0000

gestation 0.44 0.03 15.26 0.0000
parity -3.33 1.13 -2.95 0.0033

age -0.01 0.09 -0.10 0.9170
height 1.15 0.21 5.63 0.0000
weight 0.05 0.03 1.99 0.0471
smoke -8.40 0.95 -8.81 0.0000

(a) Write the equation of the regression line that includes all of the variables.

(b) Interpret the slopes of gestation and age in this context.

(c) The coefficient for parity is different than in the linear model shown in Exercise 6.2. Why
might there be a difference?

(d) Calculate the residual for the first observation in the data set.

(e) The variance of the residuals is 249.28, and the variance of the birth weights of all babies
in the data set is 332.57. Calculate the R2 and the adjusted R2. Note that there are 1,236
observations in the data set.
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6.4 Absenteeism. Researchers interested in the relationship between absenteeism from school
and certain demographic characteristics of children collected data from 146 randomly sampled stu-
dents in rural New South Wales, Australia, in a particular school year. Below are three observations
from this data set.

eth sex lrn days

1 0 1 1 2
2 0 1 1 11
...

...
...

...
...

146 1 0 0 37

The summary table below shows the results of a linear regression model for predicting the average
number of days absent based on ethnic background (eth: 0 - aboriginal, 1 - not aboriginal), sex
(sex: 0 - female, 1 - male), and learner status (lrn: 0 - average learner, 1 - slow learner).18

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.93 2.57 7.37 0.0000

eth -9.11 2.60 -3.51 0.0000
sex 3.10 2.64 1.18 0.2411
lrn 2.15 2.65 0.81 0.4177

(a) Write the equation of the regression line.

(b) Interpret each one of the slopes in this context.

(c) Calculate the residual for the first observation in the data set: a student who is aboriginal,
male, a slow learner, and missed 2 days of school.

(d) The variance of the residuals is 240.57, and the variance of the number of absent days for all
students in the data set is 264.17. Calculate the R2 and the adjusted R2. Note that there are
146 observations in the data set.

6.5 GPA. A survey of 55 Duke University students asked about their GPA, number of hours
they study at night, number of nights they go out, and their gender. Summary output of the
regression model is shown below. Note that male is coded as 1.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.45 0.35 9.85 0.00
studyweek 0.00 0.00 0.27 0.79
sleepnight 0.01 0.05 0.11 0.91

outnight 0.05 0.05 1.01 0.32
gender -0.08 0.12 -0.68 0.50

(a) Calculate a 95% confidence interval for the coefficient of gender in the model, and interpret it
in the context of the data.

(b) Would you expect a 95% confidence interval for the slope of the remaining variables to include
0? Explain

18W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth Edition. Data can also
be found in the R MASS package. New York: Springer, 2002.

http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
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6.6 Cherry trees. Timber yield is approximately equal to the volume of a tree, however, this
value is difficult to measure without first cutting the tree down. Instead, other variables, such as
height and diameter, may be used to predict a tree’s volume and yield. Researchers wanting to
understand the relationship between these variables for black cherry trees collected data from 31
such trees in the Allegheny National Forest, Pennsylvania. Height is measured in feet, diameter
in inches (at 54 inches above ground), and volume in cubic feet.19

Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.99 8.64 -6.71 0.00

height 0.34 0.13 2.61 0.01
diameter 4.71 0.26 17.82 0.00

(a) Calculate a 95% confidence interval for the coefficient of height, and interpret it in the context
of the data.

(b) One tree in this sample is 79 feet tall, has a diameter of 11.3 inches, and is 24.2 cubic feet in
volume. Determine if the model overestimates or underestimates the volume of this tree, and
by how much.

6.5.2 Model selection

6.7 Baby weights, Part IV. Exercise 6.3 considers a model that predicts a newborn’s weight
using several predictors. Use the regression table below, which summarizes the model, to answer
the following questions. If necessary, refer back to Exercise 6.3 for a reminder about the meaning
of each variable.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -80.41 14.35 -5.60 0.0000

gestation 0.44 0.03 15.26 0.0000
parity -3.33 1.13 -2.95 0.0033

age -0.01 0.09 -0.10 0.9170
height 1.15 0.21 5.63 0.0000
weight 0.05 0.03 1.99 0.0471
smoke -8.40 0.95 -8.81 0.0000

(a) Determine which variables, if any, do not have a significant linear relationship with the outcome
and should be candidates for removal from the model. If there is more than one such variable,
indicate which one should be removed first.

(b) The summary table below shows the results of the model with the age variable removed.
Determine if any other variable(s) should be removed from the model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -80.64 14.04 -5.74 0.0000

gestation 0.44 0.03 15.28 0.0000
parity -3.29 1.06 -3.10 0.0020
height 1.15 0.20 5.64 0.0000
weight 0.05 0.03 2.00 0.0459
smoke -8.38 0.95 -8.82 0.0000

19D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.
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6.8 Absenteeism, Part II. Exercise 6.4 considers a model that predicts the number of days
absent using three predictors: ethnic background (eth), gender (sex), and learner status (lrn). Use
the regression table below to answer the following questions. If necessary, refer back to Exercise 6.4
for additional details about each variable.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.93 2.57 7.37 0.0000

eth -9.11 2.60 -3.51 0.0000
sex 3.10 2.64 1.18 0.2411
lrn 2.15 2.65 0.81 0.4177

(a) Determine which variables, if any, do not have a significant linear relationship with the outcome
and should be candidates for removal from the model. If there is more than one such variable,
indicate which one should be removed first.

(b) The summary table below shows the results of the regression we refit after removing learner
status from the model. Determine if any other variable(s) should be removed from the model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.98 2.22 9.01 0.0000

eth -9.06 2.60 -3.49 0.0006
sex 2.78 2.60 1.07 0.2878

6.9 Baby weights, Part V. Exercise 6.3 provides regression output for the full model (including
all explanatory variables available in the data set) for predicting birth weight of babies. In this
exercise we consider a forward-selection algorithm and add variables to the model one-at-a-time.
The table below shows the p-value and adjusted R2 of each model where we include only the
corresponding predictor. Based on this table, which variable should be added to the model first?

variable gestation parity age height weight smoke

p-value 2.2× 10−16 0.1052 0.2375 2.97× 10−12 8.2× 10−8 2.2× 10−16

R2
adj 0.1657 0.0013 0.0003 0.0386 0.0229 0.0569

6.10 Absenteeism, Part III. Exercise 6.4 provides regression output for the full model, includ-
ing all explanatory variables available in the data set, for predicting the number of days absent
from school. In this exercise we consider a forward-selection algorithm and add variables to the
model one-at-a-time. The table below shows the p-value and adjusted R2 of each model where we
include only the corresponding predictor. Based on this table, which variable should be added to
the model first?

variable ethnicity sex learner status

p-value 0.0007 0.3142 0.5870
R2
adj 0.0714 0.0001 0
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6.5.3 Checking model assumptions using graphs

6.11 Baby weights, Part V. Exercise 6.7 presents a regression model for predicting the average
birth weight of babies based on length of gestation, parity, height, weight, and smoking status of
the mother. Determine if the model assumptions are met using the plots below. If not, describe
how to proceed with the analysis.
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6.12 GPA and IQ. A regression model for predicting GPA from gender and IQ was fit, and
both predictors were found to be statistically significant. Using the plots given below, determine
if this regression model is appropriate for these data.
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6.5.4 Logistic regression

6.13 Possum classification, Part I. The common brushtail possum of the Australia region is a
bit cuter than its distant cousin, the American opossum (see Figure 5.5 on page 222). We consider
104 brushtail possums from two regions in Australia, where the possums may be considered a
random sample from the population. The first region is Victoria, which is in the eastern half of
Australia and traverses the southern coast. The second region consists of New South Wales and
Queensland, which make up eastern and northeastern Australia.

We use logistic regression to differentiate between possums in these two regions. The outcome
variable, called population, takes value 1 when a possum is from Victoria and 0 when it is from
New South Wales or Queensland. We consider five predictors: sex male (an indicator for a
possum being male), head length, skull width, total length, and tail length. Each variable
is summarized in a histogram. The full logistic regression model and a reduced model after variable
selection are summarized in the table.
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Full Model Reduced Model

Estimate SE Z Pr(>|Z|) Estimate SE Z Pr(>|Z|)
(Intercept) 39.2349 11.5368 3.40 0.0007 33.5095 9.9053 3.38 0.0007

sex male -1.2376 0.6662 -1.86 0.0632 -1.4207 0.6457 -2.20 0.0278
head length -0.1601 0.1386 -1.16 0.2480
skull width -0.2012 0.1327 -1.52 0.1294 -0.2787 0.1226 -2.27 0.0231
total length 0.6488 0.1531 4.24 0.0000 0.5687 0.1322 4.30 0.0000

tail length -1.8708 0.3741 -5.00 0.0000 -1.8057 0.3599 -5.02 0.0000

(a) Examine each of the predictors. Are there any outliers that are likely to have a very large
influence on the logistic regression model?

(b) The summary table for the full model indicates that at least one variable should be eliminated
when using the p-value approach for variable selection: head length. The second component
of the table summarizes the reduced model following variable selection. Explain why the
remaining estimates change between the two models.
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6.14 Challenger disaster, Part I. On January 28, 1986, a routine launch was anticipated for
the Challenger space shuttle. Seventy-three seconds into the flight, disaster happened: the shuttle
broke apart, killing all seven crew members on board. An investigation into the cause of the
disaster focused on a critical seal called an O-ring, and it is believed that damage to these O-rings
during a shuttle launch may be related to the ambient temperature during the launch. The table
below summarizes observational data on O-rings for 23 shuttle missions, where the mission order
is based on the temperature at the time of the launch. Temp gives the temperature in Fahrenheit,
Damaged represents the number of damaged O-rings, and Undamaged represents the number of
O-rings that were not damaged.

Shuttle Mission 1 2 3 4 5 6 7 8 9 10 11 12

Temperature 53 57 58 63 66 67 67 67 68 69 70 70
Damaged 5 1 1 1 0 0 0 0 0 0 1 0
Undamaged 1 5 5 5 6 6 6 6 6 6 5 6

Shuttle Mission 13 14 15 16 17 18 19 20 21 22 23

Temperature 70 70 72 73 75 75 76 76 78 79 81
Damaged 1 0 0 0 0 1 0 0 0 0 0
Undamaged 5 6 6 6 6 5 6 6 6 6 6

(a) Each column of the table above represents a different shuttle mission. Examine these data
and describe what you observe with respect to the relationship between temperatures and
damaged O-rings.

(b) Failures have been coded as 1 for a damaged O-ring and 0 for an undamaged O-ring, and
a logistic regression model was fit to these data. A summary of this model is given below.
Describe the key components of this summary table in words.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.6630 3.2963 3.54 0.0004

Temperature -0.2162 0.0532 -4.07 0.0000

(c) Write out the logistic model using the point estimates of the model parameters.

(d) Based on the model, do you think concerns regarding O-rings are justified? Explain.

6.15 Possum classification, Part II. A logistic regression model was proposed for classifying
common brushtail possums into their two regions in Exercise 6.13. Use the results of the summary
table for the reduced model presented in Exercise 6.13 for the questions below. The outcome
variable took value 1 if the possum was from Victoria and 0 otherwise.

(a) Write out the form of the model. Also identify which of the following variables are positively
associated (when controlling for other variables) with a possum being from Victoria: skull

width, total length, and tail length.

(b) Suppose we see a brushtail possum at a zoo in the US, and a sign says the possum had been
captured in the wild in Australia, but it doesn’t say which part of Australia. However, the sign
does indicate that the possum is male, its skull is about 63 mm wide, its tail is 37 cm long,
and its total length is 83 cm. What is the reduced model’s computed probability that this
possum is from Victoria? How confident are you in the model’s accuracy of this probability
calculation?
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6.16 Challenger disaster, Part II. Exercise 6.14 introduced us to O-rings that were identified
as a plausible explanation for the breakup of the Challenger space shuttle 73 seconds into takeoff
in 1986. The investigation found that the ambient temperature at the time of the shuttle launch
was closely related to the damage of O-rings, which are a critical component of the shuttle. See
this earlier exercise if you would like to browse the original data.
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(a) The data provided in the previous exercise are shown in the plot. The logistic model fit to
these data may be written as

log

(
p̂

1− p̂

)
= 11.6630− 0.2162× Temperature

where p̂ is the model-estimated probability that an O-ring will become damaged. Use the
model to calculate the probability that an O-ring will become damaged at each of the following
ambient temperatures: 51, 53, and 55 degrees Fahrenheit. The model-estimated probabilities
for several additional ambient temperatures are provided below, where subscripts indicate the
temperature:

p̂57 = 0.341 p̂59 = 0.251 p̂61 = 0.179 p̂63 = 0.124

p̂65 = 0.084 p̂67 = 0.056 p̂69 = 0.037 p̂71 = 0.024

(b) Add the model-estimated probabilities from part (a) on the plot, then connect these dots using
a smooth curve to represent the model-estimated probabilities.

(c) Describe any concerns you may have regarding applying logistic regression in this application,
and note any assumptions that are required to accept the model’s validity.



Appendix A

Probability

Probability forms a foundation for statistics. You might already be familiar with many aspects of
probability, however, formalization of the concepts is new for most. This chapter aims to introduce
probability on familiar terms using processes most people have seen before.

A.1 Defining probability

 Example A.1 A “die”, the singular of dice, is a cube with six faces numbered 1, 2, 3, 4,
5, and 6. What is the chance of getting 1 when rolling a die?

If the die is fair, then the chance of a 1 is as good as the chance of any other number.
Since there are six outcomes, the chance must be 1-in-6 or, equivalently, 1/6.

 Example A.2 What is the chance of getting a 1 or 2 in the next roll?

1 and 2 constitute two of the six equally likely possible outcomes, so the chance of
getting one of these two outcomes must be 2/6 = 1/3.

 Example A.3 What is the chance of getting either 1, 2, 3, 4, 5, or 6 on the next roll?

100%. The outcome must be one of these numbers.

 Example A.4 What is the chance of not rolling a 2?

Since the chance of rolling a 2 is 1/6 or 16.6̄%, the chance of not rolling a 2 must be
100%− 16.6̄% = 83.3̄% or 5/6.

Alternatively, we could have noticed that not rolling a 2 is the same as getting a 1, 3,
4, 5, or 6, which makes up five of the six equally likely outcomes and has probability
5/6.

 Example A.5 Consider rolling two dice. If 1/6th of the time the first die is a 1 and 1/6th

of those times the second die is a 1, what is the chance of getting two 1s?

If 16.6̄% of the time the first die is a 1 and 1/6th of those times the second die is also
a 1, then the chance that both dice are 1 is (1/6)× (1/6) or 1/36.

295
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n (number of rolls)
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Figure A.1: The fraction of die rolls that are 1 at each stage in a simulation.
The proportion tends to get closer to the probability 1/6 ≈ 0.167 as the
number of rolls increases.

A.1.1 Probability

We use probability to build tools to describe and understand apparent randomness. We often
frame probability in terms of a random process giving rise to an outcome.

Roll a die → 1, 2, 3, 4, 5, or 6

Flip a coin → H or T

Rolling a die or flipping a coin is a seemingly random process and each gives rise to an outcome.

Probability
The probability of an outcome is the proportion of times the outcome would occur if
we observed the random process an infinite number of times.

Probability is defined as a proportion, and it always takes values between 0 and 1 (inclusively).
It may also be displayed as a percentage between 0% and 100%.

Probability can be illustrated by rolling a die many times. Let p̂n be the proportion of
outcomes that are 1 after the first n rolls. As the number of rolls increases, p̂n will converge to the
probability of rolling a 1, p = 1/6. Figure A.1 shows this convergence for 100,000 die rolls. The
tendency of p̂n to stabilize around p is described by the Law of Large Numbers.

Law of Large Numbers
As more observations are collected, the proportion p̂n of occurrences with a particular
outcome converges to the probability p of that outcome.

Occasionally the proportion will veer off from the probability and appear to defy the Law of
Large Numbers, as p̂n does many times in Figure A.1. However, these deviations become smaller
as the number of rolls increases.

Above we write p as the probability of rolling a 1. We can also write this probability as

P (rolling a 1)

As we become more comfortable with this notation, we will abbreviate it further. For instance, if

P (A)
Probability of
outcome A

it is clear that the process is “rolling a die”, we could abbreviate P (rolling a 1) as P (1).
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⊙
Guided Practice A.6 Random processes include rolling a die and flipping a coin.
(a) Think of another random process. (b) Describe all the possible outcomes of that
process. For instance, rolling a die is a random process with potential outcomes 1, 2,
..., 6.1

What we think of as random processes are not necessarily random, but they may just be too
difficult to understand exactly. The fourth example in the footnote solution to Guided Practice A.6
suggests a roommate’s behavior is a random process. However, even if a roommate’s behavior is
not truly random, modeling her behavior as a random process can still be useful.

TIP: Modeling a process as random
It can be helpful to model a process as random even if it is not truly random.

A.1.2 Disjoint or mutually exclusive outcomes

Two outcomes are called disjoint or mutually exclusive if they cannot both happen. For
instance, if we roll a die, the outcomes 1 and 2 are disjoint since they cannot both occur. On
the other hand, the outcomes 1 and “rolling an odd number” are not disjoint since both occur
if the outcome of the roll is a 1. The terms disjoint and mutually exclusive are equivalent and
interchangeable.

Calculating the probability of disjoint outcomes is easy. When rolling a die, the outcomes
1 and 2 are disjoint, and we compute the probability that one of these outcomes will occur by
adding their separate probabilities:

P (1 or 2) = P (1) + P (2) = 1/6 + 1/6 = 1/3

What about the probability of rolling a 1, 2, 3, 4, 5, or 6? Here again, all of the outcomes are
disjoint so we add the probabilities:

P (1 or 2 or 3 or 4 or 5 or 6)

= P (1) + P (2) + P (3) + P (4) + P (5) + P (6)

= 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1.

The Addition Rule guarantees the accuracy of this approach when the outcomes are disjoint.

Addition Rule of disjoint outcomes
If A1 and A2 represent two disjoint outcomes, then the probability that one of them
occurs is given by

P (A1 or A2) = P (A1) + P (A2)

If there are many disjoint outcomes A1, ..., Ak, then the probability that one of these
outcomes will occur is

P (A1) + P (A2) + · · ·+ P (Ak) (A.7)

1Here are four examples. (i) Whether someone gets sick in the next month or not is an apparently
random process with outcomes sick and not. (ii) We can generate a random process by randomly picking
a person and measuring that person’s height. The outcome of this process will be a positive number. (iii)
Whether the stock market goes up or down next week is a seemingly random process with possible outcomes
up, down, and no change. Alternatively, we could have used the percent change in the stock market as a
numerical outcome. (iv) Whether your roommate cleans her dishes tonight probably seems like a random
process with possible outcomes cleans dishes and leaves dishes.
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⊙
Guided Practice A.8 We are interested in the probability of rolling a 1, 4, or 5.
(a) Explain why the outcomes 1, 4, and 5 are disjoint. (b) Apply the Addition Rule
for disjoint outcomes to determine P (1 or 4 or 5).2

⊙
Guided Practice A.9 In the email data set in Chapter 1, the number variable de-
scribed whether no number (labeled none), only one or more small numbers (small),
or whether at least one big number appeared in an email (big). Of the 3,921 emails,
549 had no numbers, 2,827 had only one or more small numbers, and 545 had at least
one big number. (a) Are the outcomes none, small, and big disjoint? (b) Determine
the proportion of emails with value small and big separately. (c) Use the Addition
Rule for disjoint outcomes to compute the probability a randomly selected email from
the data set has a number in it, small or big.3

Statisticians rarely work with individual outcomes and instead consider sets or collections of
outcomes. Let A represent the event where a die roll results in 1 or 2 and B represent the event
that the die roll is a 4 or a 6. We write A as the set of outcomes {1, 2} and B = {4, 6}. These sets
are commonly called events. Because A and B have no elements in common, they are disjoint
events. A and B are represented in Figure A.2.

1 2 3 4 5 6

A

B

D

Figure A.2: Three events, A, B, and D, consist of outcomes from rolling a
die. A and B are disjoint since they do not have any outcomes in common.

The Addition Rule applies to both disjoint outcomes and disjoint events. The probability
that one of the disjoint events A or B occurs is the sum of the separate probabilities:

P (A or B) = P (A) + P (B) = 1/3 + 1/3 = 2/3⊙
Guided Practice A.10 (a) Verify the probability of event A, P (A), is 1/3 using
the Addition Rule. (b) Do the same for event B.4⊙
Guided Practice A.11 (a) Using Figure A.2 as a reference, what outcomes are
represented by event D? (b) Are events B and D disjoint? (c) Are events A and D
disjoint?5

⊙
Guided Practice A.12 In Guided Practice A.11, you confirmed B and D from
Figure A.2 are disjoint. Compute the probability that either event B or event D
occurs.6

2(a) The random process is a die roll, and at most one of these outcomes can come up. This means
they are disjoint outcomes. (b) P (1 or 4 or 5) = P (1) + P (4) + P (5) = 1

6
+ 1

6
+ 1

6
= 3

6
= 1

2
3(a) Yes. Each email is categorized in only one level of number. (b) Small: 2827

3921
= 0.721. Big:

545
3921

= 0.139. (c) P (small or big) = P (small) + P (big) = 0.721 + 0.139 = 0.860.
4(a) P (A) = P (1 or 2) = P (1) + P (2) = 1

6
+ 1

6
= 2

6
= 1

3
. (b) Similarly, P (B) = 1/3.

5(a) Outcomes 2 and 3. (b) Yes, events B and D are disjoint because they share no outcomes. (c) The
events A and D share an outcome in common, 2, and so are not disjoint.

6Since B and D are disjoint events, use the Addition Rule: P (B or D) = P (B) + P (D) = 1
3

+ 1
3

= 2
3

.
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2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦
2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥
2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠

Table A.3: Representations of the 52 unique cards in a deck.

Diamonds Face cards

10 3 9
0.1923 0.0577 0.1731

Other cards: 30 (0.5769)

Figure A.4: A Venn diagram for diamonds and face cards.

A.1.3 Probabilities when events are not disjoint

Let’s consider calculations for two events that are not disjoint in the context of a regular deck of
52 cards, represented in Table A.3. If you are unfamiliar with the cards in a regular deck, please
see the footnote.7⊙

Guided Practice A.13 (a) What is the probability that a randomly selected card
is a diamond? (b) What is the probability that a randomly selected card is a face
card?8

Venn diagrams are useful when outcomes can be categorized as “in” or “out” for two or
three variables, attributes, or random processes. The Venn diagram in Figure A.4 uses a circle to
represent diamonds and another to represent face cards. If a card is both a diamond and a face
card, it falls into the intersection of the circles. If it is a diamond but not a face card, it will be
in part of the left circle that is not in the right circle (and so on). The total number of cards
that are diamonds is given by the total number of cards in the diamonds circle: 10 + 3 = 13. The
probabilities are also shown (e.g. 10/52 = 0.1923).⊙

Guided Practice A.14 Using the Venn diagram, verify P (face card) = 12/52 =
3/13.9

Let A represent the event that a randomly selected card is a diamond and B represent the
event that it is a face card. How do we compute P (A or B)? Events A and B are not disjoint
– the cards J♦, Q♦, and K♦ fall into both categories – so we cannot use the Addition Rule for

7The 52 cards are split into four suits: ♣ (club), ♦ (diamond), ♥ (heart), ♠ (spade). Each suit has
its 13 cards labeled: 2, 3, ..., 10, J (jack), Q (queen), K (king), and A (ace). Thus, each card is a unique
combination of a suit and a label, e.g. 4♥ and J♣. The 12 cards represented by the jacks, queens, and
kings are called face cards. The cards that are ♦ or ♥ are typically colored red while the other two suits
are typically colored black.

8(a) There are 52 cards and 13 diamonds. If the cards are thoroughly shuffled, each card has an equal
chance of being drawn, so the probability that a randomly selected card is a diamond is P (♦) = 13

52
= 0.250.

(b) Likewise, there are 12 face cards, so P (face card) = 12
52

= 3
13

= 0.231.
9The Venn diagram shows face cards split up into “face card but not ♦” and “face card and ♦”. Since

these correspond to disjoint events, P (face card) is found by adding the two corresponding probabilities:
3
52

+ 9
52

= 12
52

= 3
13

.
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disjoint events. Instead we use the Venn diagram. We start by adding the probabilities of the two
events:

P (A) + P (B) = P (♦) + P (face card) = 12/52 + 13/52

However, the three cards that are in both events were counted twice, once in each probability. We
must correct this double counting:

P (A or B) = P (face card or ♦)

= P (face card) + P (♦)− P (face card and ♦) (A.15)

= 12/52 + 13/52− 3/52

= 22/52 = 11/26

Equation (A.15) is an example of the General Addition Rule.

General Addition Rule
If A and B are any two events, disjoint or not, then the probability that at least one of
them will occur is

P (A or B) = P (A) + P (B)− P (A and B) (A.16)

where P (A and B) is the probability that both events occur.

TIP: “or” is inclusive
When we write “or” in statistics, we mean “and/or” unless we explicitly state otherwise.
Thus, A or B occurs means A, B, or both A and B occur.

⊙
Guided Practice A.17 (a) If A and B are disjoint, describe why this implies P (A
and B) = 0. (b) Using part (a), verify that the General Addition Rule simplifies to
the simpler Addition Rule for disjoint events if A and B are disjoint.10

⊙
Guided Practice A.18 In the email data set with 3,921 emails, 367 were spam,
2,827 contained some small numbers but no big numbers, and 168 had both charac-
teristics. Create a Venn diagram for this setup.11

⊙
Guided Practice A.19 (a) Use your Venn diagram from Guided Practice A.18 to
determine the probability a randomly drawn email from the email data set is spam
and had small numbers (but not big numbers). (b) What is the probability that the
email had either of these attributes?12

A.1.4 Probability distributions

A probability distribution is a table of all disjoint outcomes and their associated probabilities.
Table A.5 shows the probability distribution for the sum of two dice.

10(a) If A and B are disjoint, A and B can never occur simultaneously. (b) If A and B are disjoint,
then the last term of Equation (A.16) is 0 (see part (a)) and we are left with the Addition Rule for disjoint
events.

11Both the counts and corresponding probabilities (e.g. 2659/3921 =
0.678) are shown. Notice that the number of emails represented in
the left circle corresponds to 2659 + 168 = 2827, and the number
represented in the right circle is 168 + 199 = 367.

small numbers and no big numbers spam

2659 168 199
0.678 0.043 0.051

Other emails: 3921−2659−168−199 = 895 (0.228)

12(a) The solution is represented by the intersection of the two circles: 0.043. (b) This is the sum of the
three disjoint probabilities shown in the circles: 0.678 + 0.043 + 0.051 = 0.772.
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Dice sum 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Table A.5: Probability distribution for the sum of two dice.

Income range ($1000s) 0-25 25-50 50-100 100+
(a) 0.18 0.39 0.33 0.16
(b) 0.38 -0.27 0.52 0.37
(c) 0.28 0.27 0.29 0.16

Table A.6: Proposed distributions of US household incomes (Guided Prac-
tice A.20).

Rules for probability distributions
A probability distribution is a list of the possible outcomes with corresponding probabil-
ities that satisfies three rules:

1. The outcomes listed must be disjoint.

2. Each probability must be between 0 and 1.

3. The probabilities must total 1.

⊙
Guided Practice A.20 Table A.6 suggests three distributions for household in-
come in the United States. Only one is correct. Which one must it be? What is
wrong with the other two?13

Chapter 1 emphasized the importance of plotting data to provide quick summaries. Prob-
ability distributions can also be summarized in a bar plot. For instance, the distribution of US
household incomes is shown in Figure A.7 as a bar plot.14 The probability distribution for the
sum of two dice is shown in Table A.5 and plotted in Figure A.8.

In these bar plots, the bar heights represent the probabilities of outcomes. If the outcomes
are numerical and discrete, it is usually (visually) convenient to make a bar plot that resembles a
histogram, as in the case of the sum of two dice. Another example of plotting the bars at their
respective locations is shown in Figure A.19 on page 316.

A.1.5 Complement of an event

Rolling a die produces a value in the set {1, 2, 3, 4, 5, 6}. This set of all possible outcomes is
called the sample space (S) for rolling a die. We often use the sample space to examine the

S
Sample space

scenario where an event does not occur.

Let D = {2, 3} represent the event that the outcome of a die roll is 2 or 3. Then the
complement of D represents all outcomes in our sample space that are not in D, which is

Ac

Complement
of outcome A

denoted by Dc = {1, 4, 5, 6}. That is, Dc is the set of all possible outcomes not already included
in D. Figure A.9 shows the relationship between D, Dc, and the sample space S.

13The probabilities of (a) do not sum to 1. The second probability in (b) is negative. This leaves (c),
which sure enough satisfies the requirements of a distribution. One of the three was said to be the actual
distribution of US household incomes, so it must be (c).

14It is also possible to construct a distribution plot when income is not artificially binned into four
groups.
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Figure A.7: The probability distribution of US household income.
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Figure A.8: The probability distribution of the sum of two dice.
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1 4 5 62 3
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S

Figure A.9: Event D = {2, 3} and its complement, Dc = {1, 4, 5, 6}.
S represents the sample space, which is the set of all possible events.

⊙
Guided Practice A.21 (a) Compute P (Dc) = P (rolling a 1, 4, 5, or 6). (b) What
is P (D) + P (Dc)?15

⊙
Guided Practice A.22 Events A = {1, 2} and B = {4, 6} are shown in Figure A.2
on page 298. (a) Write out what Ac andBc represent. (b) Compute P (Ac) and P (Bc).
(c) Compute P (A) + P (Ac) and P (B) + P (Bc).16

A complement of an event A is constructed to have two very important properties: (i) every
possible outcome not in A is in Ac, and (ii) A and Ac are disjoint. Property (i) implies

P (A or Ac) = 1 (A.23)

That is, if the outcome is not in A, it must be represented in Ac. We use the Addition Rule for
disjoint events to apply Property (ii):

P (A or Ac) = P (A) + P (Ac) (A.24)

Combining Equations (A.23) and (A.24) yields a very useful relationship between the probability
of an event and its complement.

Complement
The complement of event A is denoted Ac, and Ac represents all outcomes not in A. A
and Ac are mathematically related:

P (A) + P (Ac) = 1, i.e. P (A) = 1− P (Ac) (A.25)

In simple examples, computing A or Ac is feasible in a few steps. However, using the com-
plement can save a lot of time as problems grow in complexity.⊙

Guided Practice A.26 Let A represent the event where we roll two dice and their
total is less than 12. (a) What does the event Ac represent? (b) Determine P (Ac)
from Table A.5 on page 301. (c) Determine P (A).17

⊙
Guided Practice A.27 Consider again the probabilities from Table A.5 and rolling
two dice. Find the following probabilities: (a) The sum of the dice is not 6. (b) The
sum is at least 4. That is, determine the probability of the event B = {4, 5, ..., 12}.
(c) The sum is no more than 10. That is, determine the probability of the event
D = {2, 3, ..., 10}.18

15(a) The outcomes are disjoint and each has probability 1/6, so the total probability is 4/6 = 2/3.
(b) We can also see that P (D) = 1

6
+ 1

6
= 1/3. Since D and Dc are disjoint, P (D) + P (Dc) = 1.

16Brief solutions: (a) Ac = {3, 4, 5, 6} and Bc = {1, 2, 3, 5}. (b) Noting that each outcome is disjoint,
add the individual outcome probabilities to get P (Ac) = 2/3 and P (Bc) = 2/3. (c) A and Ac are disjoint,
and the same is true of B and Bc. Therefore, P (A) + P (Ac) = 1 and P (B) + P (Bc) = 1.

17(a) The complement of A: when the total is equal to 12. (b) P (Ac) = 1/36. (c) Use the probability
of the complement from part (b), P (Ac) = 1/36, and Equation (A.25): P (less than 12) = 1 − P (12) =
1− 1/36 = 35/36.

18(a) First find P (6) = 5/36, then use the complement: P (not 6) = 1− P (6) = 31/36.
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A.1.6 Independence

Just as variables and observations can be independent, random processes can be independent, too.
Two processes are independent if knowing the outcome of one provides no useful information
about the outcome of the other. For instance, flipping a coin and rolling a die are two independent
processes – knowing the coin was heads does not help determine the outcome of a die roll. On the
other hand, stock prices usually move up or down together, so they are not independent.

Example A.5 provides a basic example of two independent processes: rolling two dice. We
want to determine the probability that both will be 1. Suppose one of the dice is red and the
other white. If the outcome of the red die is a 1, it provides no information about the outcome
of the white die. We first encountered this same question in Example A.5 (page 295), where we
calculated the probability using the following reasoning: 1/6th of the time the red die is a 1, and
1/6th of those times the white die will also be 1. This is illustrated in Figure A.10. Because the
rolls are independent, the probabilities of the corresponding outcomes can be multiplied to get the
final answer: (1/6)× (1/6) = 1/36. This can be generalized to many independent processes.

All rolls

1/6th of the first
rolls are a 1.

1/6th of those times where
the first roll is a 1 the
second roll is also a 1.

Figure A.10: 1/6th of the time, the first roll is a 1. Then 1/6th of those
times, the second roll will also be a 1.

 Example A.28 What if there was also a blue die independent of the other two? What is
the probability of rolling the three dice and getting all 1s?

The same logic applies from Example A.5. If 1/36th of the time the white and red
dice are both 1, then 1/6th of those times the blue die will also be 1, so multiply:

P (white = 1 and red = 1 and blue = 1) = P (white = 1)× P (red = 1)× P (blue = 1)

= (1/6)× (1/6)× (1/6) = 1/216

Examples A.5 and A.28 illustrate what is called the Multiplication Rule for independent
processes.

(b) First find the complement, which requires much less effort: P (2 or 3) = 1/36 + 2/36 = 1/12. Then
calculate P (B) = 1− P (Bc) = 1− 1/12 = 11/12.

(c) As before, finding the complement is the clever way to determine P (D). First find P (Dc) = P (11 or
12) = 2/36 + 1/36 = 1/12. Then calculate P (D) = 1− P (Dc) = 11/12.
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Multiplication Rule for independent processes
If A and B represent events from two different and independent processes, then the
probability that both A and B occur can be calculated as the product of their separate
probabilities:

P (A and B) = P (A)× P (B) (A.29)

Similarly, if there are k events A1, ..., Ak from k independent processes, then the proba-
bility they all occur is

P (A1)× P (A2)× · · · × P (Ak)

⊙
Guided Practice A.30 About 9% of people are left-handed. Suppose 2 people
are selected at random from the U.S. population. Because the sample size of 2 is
very small relative to the population, it is reasonable to assume these two people are
independent. (a) What is the probability that both are left-handed? (b) What is the
probability that both are right-handed?19

⊙
Guided Practice A.31 Suppose 5 people are selected at random.20

(a) What is the probability that all are right-handed?

(b) What is the probability that all are left-handed?

(c) What is the probability that not all of the people are right-handed?

Suppose the variables handedness and gender are independent, i.e. knowing someone’s
gender provides no useful information about their handedness and vice-versa. Then we can com-
pute whether a randomly selected person is right-handed and female21 using the Multiplication
Rule:

P (right-handed and female) = P (right-handed)× P (female)

= 0.91× 0.50 = 0.455

19(a) The probability the first person is left-handed is 0.09, which is the same for the second person.
We apply the Multiplication Rule for independent processes to determine the probability that both will be
left-handed: 0.09× 0.09 = 0.0081.

(b) It is reasonable to assume the proportion of people who are ambidextrous (both right and left handed)
is nearly 0, which results in P (right-handed) = 1 − 0.09 = 0.91. Using the same reasoning as in part (a),
the probability that both will be right-handed is 0.91× 0.91 = 0.8281.

20(a) The abbreviations RH and LH are used for right-handed and left-handed, respectively. Since each
are independent, we apply the Multiplication Rule for independent processes:

P (all five are RH) = P (first = RH, second = RH, ..., fifth = RH)

= P (first = RH)× P (second = RH)× · · · × P (fifth = RH)

= 0.91× 0.91× 0.91× 0.91× 0.91 = 0.624

(b) Using the same reasoning as in (a), 0.09× 0.09× 0.09× 0.09× 0.09 = 0.0000059
(c) Use the complement, P (all five are RH), to answer this question:

P (not all RH) = 1− P (all RH) = 1− 0.624 = 0.376

21The actual proportion of the U.S. population that is female is about 50%, and so we use 0.5 for the
probability of sampling a woman. However, this probability does differ in other countries.
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⊙
Guided Practice A.32 Three people are selected at random.22

(a) What is the probability that the first person is male and right-handed?

(b) What is the probability that the first two people are male and right-handed?.

(c) What is the probability that the third person is female and left-handed?

(d) What is the probability that the first two people are male and right-handed and
the third person is female and left-handed?

Sometimes we wonder if one outcome provides useful information about another outcome.
The question we are asking is, are the occurrences of the two events independent? We say that
two events A and B are independent if they satisfy Equation (A.29).

 Example A.33 If we shuffle up a deck of cards and draw one, is the event that the card
is a heart independent of the event that the card is an ace?

The probability the card is a heart is 1/4 and the probability that it is an ace is 1/13.
The probability the card is the ace of hearts is 1/52. We check whether Equation A.29
is satisfied:

P (♥)× P (ace) =
1

4
× 1

13
=

1

52
= P (♥ and ace)

Because the equation holds, the event that the card is a heart and the event that the
card is an ace are independent events.

A.2 Conditional probability

Are students more likely to use marijuana when their parents used drugs? The drug use data set
contains a sample of 445 cases with two variables, student and parents, and is summarized in
Table A.11.23 The student variable is either uses or not, where a student is labeled as uses if
she has recently used marijuana. The parents variable takes the value used if at least one of the
parents used drugs, including alcohol.

parents

used not Total
uses 125 94 219

student
not 85 141 226
Total 210 235 445

Table A.11: Contingency table summarizing the drug use data set.

 Example A.34 If at least one parent used drugs, what is the chance their child (student)
uses?

We will estimate this probability using the data. Of the 210 cases in this data set
where parents = used, 125 represent cases where student = uses:

P (student = uses given parents = used) =
125

210
= 0.60

22Brief answers are provided. (a) This can be written in probability notation as P (a randomly selected
person is male and right-handed) = 0.455. (b) 0.207. (c) 0.045. (d) 0.0093.

23Ellis GJ and Stone LH. 1979. Marijuana Use in College: An Evaluation of a Modeling Explanation.
Youth and Society 10:323-334.
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Drug use

parents used

student uses0.19

0.21

0.280.28

neither: 0.32

Figure A.12: A Venn diagram using boxes for the drug use data set.

parents: used parents: not Total
student: uses 0.28 0.21 0.49
student: not 0.19 0.32 0.51
Total 0.47 0.53 1.00

Table A.13: Probability table summarizing parental and student drug use.

 Example A.35 A student is randomly selected from the study and she does not use drugs.
What is the probability that at least one of her parents used?

If the student does not use drugs, then she is one of the 226 students in the second
row. Of these 226 students, 85 had at least one parent who used drugs:

P (parents = used given student = not) =
85

226
= 0.376

A.2.1 Marginal and joint probabilities

Table A.13 includes row and column totals for each variable separately in the drug use data set.
These totals represent marginal probabilities for the sample, which are the probabilities based
on a single variable without conditioning on any other variables. For instance, a probability based
solely on the student variable is a marginal probability:

P (student = uses) =
219

445
= 0.492

A probability of outcomes for two or more variables or processes is called a joint probability:

P (student = uses and parents = not) =
94

445
= 0.21

It is common to substitute a comma for “and” in a joint probability, although either is acceptable.

Marginal and joint probabilities
If a probability is based on a single variable, it is a marginal probability. The probability
of outcomes for two or more variables or processes is called a joint probability.

We use table proportions to summarize joint probabilities for the drug use sample. These
proportions are computed by dividing each count in Table A.11 by 445 to obtain the proportions
in Table A.13. The joint probability distribution of the parents and student variables is shown
in Table A.14.
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Joint outcome Probability
parents = used, student = uses 0.28
parents = used, student = not 0.19
parents = not, student = uses 0.21
parents = not, student = not 0.32
Total 1.00

Table A.14: A joint probability distribution for the drug use data set.

⊙
Guided Practice A.36 Verify Table A.14 represents a probability distribution:
events are disjoint, all probabilities are non-negative, and the probabilities sum to 1.24

We can compute marginal probabilities using joint probabilities in simple cases. For example,
the probability a random student from the study uses drugs is found by summing the outcomes
from Table A.14 where student = uses:

P (student = uses)

= P (parents = used, student = uses) +

P (parents = not, student = uses)

= 0.28 + 0.21 = 0.49

A.2.2 Defining conditional probability

There is some connection between drug use of parents and of the student: drug use of one is
associated with drug use of the other.25 In this section, we discuss how to use information about
associations between two variables to improve probability estimation.

The probability that a random student from the study uses drugs is 0.49. Could we update
this probability if we knew that this student’s parents used drugs? Absolutely. To do so, we limit
our view to only those 210 cases where parents used drugs and look at the fraction where the
student uses drugs:

P (student = uses given parents = used) =
125

210
= 0.60

We call this a conditional probability because we computed the probability under a condition:
parents = used. There are two parts to a conditional probability, the outcome of interest and
the condition. It is useful to think of the condition as information we know to be true, and this
information usually can be described as a known outcome or event.

We separate the text inside our probability notation into the outcome of interest and the
condition:

P (student = uses given parents = used)

= P (student = uses | parents = used) =
125

210
= 0.60 (A.37)

The vertical bar “|” is read as given.

P (A|B)
Probability of
outcome A
given B In Equation (A.37), we computed the probability a student uses based on the condition that

24Each of the four outcome combination are disjoint, all probabilities are indeed non-negative, and the
sum of the probabilities is 0.28 + 0.19 + 0.21 + 0.32 = 1.00.

25This is an observational study and no causal conclusions may be reached.
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at least one parent used as a fraction:

P (student = uses | parents = used)

=
# times student = uses and parents = used

# times parents = used
(A.38)

=
125

210
= 0.60

We considered only those cases that met the condition, parents = used, and then we computed
the ratio of those cases that satisfied our outcome of interest, the student uses.

Counts are not always available for data, and instead only marginal and joint probabilities
may be provided. For example, disease rates are commonly listed in percentages rather than in a
count format. We would like to be able to compute conditional probabilities even when no counts
are available, and we use Equation (A.38) as an example demonstrating this technique.

We considered only those cases that satisfied the condition, parents = used. Of these cases,
the conditional probability was the fraction who represented the outcome of interest, student

= uses. Suppose we were provided only the information in Table A.13 on page 307, i.e. only
probability data. Then if we took a sample of 1000 people, we would anticipate about 47% or
0.47× 1000 = 470 would meet our information criterion. Similarly, we would expect about 28% or
0.28 × 1000 = 280 to meet both the information criterion and represent our outcome of interest.
Thus, the conditional probability could be computed:

P (student = uses | parents = used) =
# (student = uses and parents = used)

# (parents = used)

=
280

470
=

0.28

0.47
= 0.60 (A.39)

In Equation (A.39), we examine exactly the fraction of two probabilities, 0.28 and 0.47, which we
can write as

P (student = uses and parents = used) and P (parents = used).

The fraction of these probabilities represents our general formula for conditional probability.

Conditional Probability
The conditional probability of the outcome of interest A given condition B is computed
as the following:

P (A|B) =
P (A and B)

P (B)
(A.40)

⊙
Guided Practice A.41 (a) Write out the following statement in conditional prob-
ability notation: “The probability a random case has parents = not if it is known
that student = not ”. Notice that the condition is now based on the student, not the
parent. (b) Determine the probability from part (a). Table A.13 on page 307 may be
helpful.26

26(a) P (parent = not|student = not). (b) Equation (A.40) for conditional probability indicates we
should first find P (parents = not and student = not) = 0.32 and P (student = not) = 0.51. Then the
ratio represents the conditional probability: 0.32/0.51 = 0.63.
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inoculated
yes no Total

lived 238 5136 5374
result

died 6 844 850
Total 244 5980 6224

Table A.15: Contingency table for the smallpox data set.

inoculated
yes no Total

lived 0.0382 0.8252 0.8634
result

died 0.0010 0.1356 0.1366
Total 0.0392 0.9608 1.0000

Table A.16: Table proportions for the smallpox data, computed by dividing
each count by the table total, 6224.

⊙
Guided Practice A.42 (a) Determine the probability that one of the parents had
used drugs if it is known the student does not use drugs. (b) Using the answers from
part (a) and Guided Practice A.41(b), compute

P (parents = used|student = not) + P (parents = not|student = not)

(c) Provide an intuitive argument to explain why the sum in (b) is 1.27

⊙
Guided Practice A.43 The data indicate that drug use of parents and children
are associated. Does this mean the drug use of parents causes the drug use of the
students?28

A.2.3 Smallpox in Boston, 1721

The smallpox data set provides a sample of 6,224 individuals from the year 1721 who were exposed
to smallpox in Boston.29 Doctors at the time believed that inoculation, which involves exposing a
person to the disease in a controlled form, could reduce the likelihood of death.

Each case represents one person with two variables: inoculated and result. The variable
inoculated takes two levels: yes or no, indicating whether the person was inoculated or not. The
variable result has outcomes lived or died. These data are summarized in Tables A.15 and A.16.⊙

Guided Practice A.44 Write out, in formal notation, the probability a ran-
domly selected person who was not inoculated died from smallpox, and find this
probability.30

27(a) This probability is
P (parents = used and student = not)

P (student = not)
= 0.19

0.51
= 0.37. (b) The total equals 1. (c) Un-

der the condition the student does not use drugs, the parents must either use drugs or not. The complement
still appears to work when conditioning on the same information.

28No. This was an observational study. Two potential confounding variables include income and region.
Can you think of others?

29Fenner F. 1988. Smallpox and Its Eradication (History of International Public Health, No. 6).
Geneva: World Health Organization. ISBN 92-4-156110-6.

30P (result = died | inoculated = no) =
P (result = died and inoculated = no)

P (inoculated = no)
= 0.1356

0.9608
= 0.1411.
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⊙
Guided Practice A.45 Determine the probability that an inoculated person
died from smallpox. How does this result compare with the result of Guided Prac-
tice A.44?31

⊙
Guided Practice A.46 The people of Boston self-selected whether or not to be
inoculated. (a) Is this study observational or was this an experiment? (b) Can we infer
any causal connection using these data? (c) What are some potential confounding
variables that might influence whether someone lived or died and also affect whether
that person was inoculated?32

A.2.4 General multiplication rule

Section A.1.6 introduced the Multiplication Rule for independent processes. Here we provide the
General Multiplication Rule for events that might not be independent.

General Multiplication Rule
If A and B represent two outcomes or events, then

P (A and B) = P (A|B)× P (B)

It is useful to think of A as the outcome of interest and B as the condition.

This General Multiplication Rule is simply a rearrangement of the definition for conditional
probability in Equation (A.40) on page 309.

 Example A.47 Consider the smallpox data set. Suppose we are given only two pieces of
information: 96.08% of residents were not inoculated, and 85.88% of the residents who were
not inoculated ended up surviving. How could we compute the probability that a resident
was not inoculated and lived?

We will compute our answer using the General Multiplication Rule and then verify
it using Table A.16. We want to determine

P (result = lived and inoculated = no)

and we are given that

P (result = lived | inoculated = no) = 0.8588

P (inoculated = no) = 0.9608

Among the 96.08% of people who were not inoculated, 85.88% survived:

P (result = lived and inoculated = no) = 0.8588× 0.9608 = 0.8251

This is equivalent to the General Multiplication Rule. We can confirm this probability
in Table A.16 at the intersection of no and lived (with a small rounding error).⊙
Guided Practice A.48 Use P (inoculated = yes) = 0.0392 and P (result =
lived | inoculated = yes) = 0.9754 to determine the probability that a person was
both inoculated and lived.33

31P (result = died | inoculated = yes) =
P (result = died and inoculated = yes)

P (inoculated = yes)
= 0.0010

0.0392
= 0.0255. The

death rate for individuals who were inoculated is only about 1 in 40 while the death rate is about 1 in 7
for those who were not inoculated.

32Brief answers: (a) Observational. (b) No, we cannot infer causation from this observational study.
(c) Accessibility to the latest and best medical care. There are other valid answers for part (c).

33The answer is 0.0382, which can be verified using Table A.16.
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⊙
Guided Practice A.49 If 97.45% of the people who were inoculated lived, what
proportion of inoculated people must have died?34

Sum of conditional probabilities
Let A1, ..., Ak represent all the disjoint outcomes for a variable or process. Then if B is
an event, possibly for another variable or process, we have:

P (A1|B) + · · ·+ P (Ak|B) = 1

The rule for complements also holds when an event and its complement are conditioned
on the same information:

P (A|B) = 1− P (Ac|B)

⊙
Guided Practice A.50 Based on the probabilities computed above, does it appear
that inoculation is effective at reducing the risk of death from smallpox?35

A.2.5 Independence considerations in conditional probability

If two processes are independent, then knowing the outcome of one should provide no information
about the other. We can show this is mathematically true using conditional probabilities.⊙

Guided Practice A.51 Let X and Y represent the outcomes of rolling two dice.
(a) What is the probability that the first die, X, is 1? (b) What is the probability
that both X and Y are 1? (c) Use the formula for conditional probability to compute
P (Y = 1 |X = 1). (d) What is P (Y = 1)? Is this different from the answer from
part (c)? Explain.36

We can show in Guided Practice A.51(c) that the conditioning information has no influence
by using the Multiplication Rule for independence processes:

P (Y = 1|X = 1) =
P (Y = 1 and X = 1)

P (X = 1)

=
P (Y = 1)× P (X = 1)

P (X = 1)

= P (Y = 1)

⊙
Guided Practice A.52 Ron is watching a roulette table in a casino and notices
that the last five outcomes were black. He figures that the chances of getting black

six times in a row is very small (about 1/64) and puts his paycheck on red. What is
wrong with his reasoning?37

34There were only two possible outcomes: lived or died. This means that 100% - 97.45% = 2.55% of
the people who were inoculated died.

35The samples are large relative to the difference in death rates for the “inoculated” and “not inoculated”
groups, so it seems there is an association between inoculated and outcome. However, as noted in the
solution to Guided Practice A.46, this is an observational study and we cannot be sure if there is a causal
connection. (Further research has shown that inoculation is effective at reducing death rates.)

36Brief solutions: (a) 1/6. (b) 1/36. (c)
P (Y= 1 and X= 1)

P (X= 1)
=

1/36
1/6

= 1/6. (d) The probability is the

same as in part (c): P (Y = 1) = 1/6. The probability that Y = 1 was unchanged by knowledge about X,
which makes sense as X and Y are independent.

37He has forgotten that the next roulette spin is independent of the previous spins. Casinos do employ
this practice; they post the last several outcomes of many betting games to trick unsuspecting gamblers
into believing the odds are in their favor. This is called the gambler’s fallacy.
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A.2.6 Tree diagrams

Tree diagrams are a tool to organize outcomes and probabilities around the structure of the
data. They are most useful when two or more processes occur in a sequence and each process is
conditioned on its predecessors.

The smallpox data fit this description. We see the population as split by inoculation: yes

and no. Following this split, survival rates were observed for each group. This structure is reflected
in the tree diagram shown in Figure A.17. The first branch for inoculation is said to be the
primary branch while the other branches are secondary.

Innoculated Result

yes,  0.0392

lived,  0.9754
0.0392*0.9754 = 0.03824

died,  0.0246
0.0392*0.0246 = 0.00096

no,  0.9608

lived,  0.8589
0.9608*0.8589 = 0.82523

died,  0.1411
0.9608*0.1411 = 0.13557

Figure A.17: A tree diagram of the smallpox data set.

Tree diagrams are annotated with marginal and conditional probabilities, as shown in Fig-
ure A.17. This tree diagram splits the smallpox data by inoculation into the yes and no groups
with respective marginal probabilities 0.0392 and 0.9608. The secondary branches are condi-
tioned on the first, so we assign conditional probabilities to these branches. For example, the
top branch in Figure A.17 is the probability that result = lived conditioned on the information
that inoculated = yes. We may (and usually do) construct joint probabilities at the end of each
branch in our tree by multiplying the numbers we come across as we move from left to right. These
joint probabilities are computed using the General Multiplication Rule:

P (inoculated = yes and result = lived)

= P (inoculated = yes)× P (result = lived|inoculated = yes)

= 0.0392× 0.9754 = 0.0382
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 Example A.53 Consider the midterm and final for a statistics class. Suppose 13% of
students earned an A on the midterm. Of those students who earned an A on the midterm,
47% received an A on the final, and 11% of the students who earned lower than an A on
the midterm received an A on the final. You randomly pick up a final exam and notice the
student received an A. What is the probability that this student earned an A on the midterm?

The end-goal is to find P (midterm = A|final = A). To calculate this conditional
probability, we need the following probabilities:

P (midterm = A and final = A) and P (final = A)

However, this information is not provided, and it is not obvious how to calculate
these probabilities. Since we aren’t sure how to proceed, it is useful to organize the
information into a tree diagram, as shown in Figure A.18. When constructing a
tree diagram, variables provided with marginal probabilities are often used to create
the tree’s primary branches; in this case, the marginal probabilities are provided for
midterm grades. The final grades, which correspond to the conditional probabilities
provided, will be shown on the secondary branches.

Midterm Final

A,  0.13

A,  0.47
0.13*0.47 = 0.0611

other,  0.53
0.13*0.53 = 0.0689

other,  0.87

A,  0.11
0.87*0.11 = 0.0957

other,  0.89
0.87*0.89 = 0.7743

Figure A.18: A tree diagram describing the midterm and final variables.

With the tree diagram constructed, we may compute the required probabilities:

P (midterm = A and final = A) = 0.0611

P (final = A)

= P (midterm = other and final = A) + P (midterm = A and final = A)

= 0.0611 + 0.0957 = 0.1568

The marginal probability, P (final = A), was calculated by adding up all the joint
probabilities on the right side of the tree that correspond to final = A. We may now
finally take the ratio of the two probabilities:

P (midterm = A|final = A) =
P (midterm = A and final = A)

P (final = A)

=
0.0611

0.1568
= 0.3897

The probability the student also earned an A on the midterm is about 0.39.
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⊙
Guided Practice A.54 After an introductory statistics course, 78% of students
can successfully construct tree diagrams. Of those who can construct tree diagrams,
97% passed, while only 57% of those students who could not construct tree diagrams
passed. (a) Organize this information into a tree diagram. (b) What is the probability
that a randomly selected student passed? (c) Compute the probability a student is
able to construct a tree diagram if it is known that she passed.38

A.3 Random variables

 Example A.55 Two books are assigned for a statistics class: a textbook and its corre-
sponding study guide. The university bookstore determined 20% of enrolled students do not
buy either book, 55% buy the textbook only, and 25% buy both books, and these percent-
ages are relatively constant from one term to another. If there are 100 students enrolled,
how many books should the bookstore expect to sell to this class?

Around 20 students will not buy either book (0 books total), about 55 will buy one
book (55 books total), and approximately 25 will buy two books (totaling 50 books
for these 25 students). The bookstore should expect to sell about 105 books for this
class.⊙
Guided Practice A.56 Would you be surprised if the bookstore sold slightly more
or less than 105 books?39

 Example A.57 The textbook costs $137 and the study guide $33. How much revenue
should the bookstore expect from this class of 100 students?

About 55 students will just buy a textbook, providing revenue of

$137× 55 = $7, 535

The roughly 25 students who buy both the textbook and the study guide would pay
a total of

($137 + $33)× 25 = $170× 25 = $4, 250

Thus, the bookstore should expect to generate about $7, 535 + $4, 250 = $11, 785
from these 100 students for this one class. However, there might be some sampling
variability so the actual amount may differ by a little bit.

38(a) The tree diagram is shown to the right.
(b) Identify which two joint probabilities represent
students who passed, and add them: P (passed) =
0.7566 + 0.1254 = 0.8820. (c) P (construct tree
diagram | passed) = 0.7566

0.8820
= 0.8578.

Able to construct
tree diagrams

Pass class

yes,  0.78

pass,  0.97
0.78*0.97 = 0.7566

fail,  0.03
0.78*0.03 = 0.0234

no,  0.22

pass,  0.57
0.22*0.57 = 0.1254

fail,  0.43
0.22*0.43 = 0.0946

39If they sell a little more or a little less, this should not be a surprise. Hopefully Chapter 1 helped make
clear that there is natural variability in observed data. For example, if we would flip a coin 100 times, it
will not usually come up heads exactly half the time, but it will probably be close.
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Figure A.19: Probability distribution for the bookstore’s revenue from a
single student. The distribution balances on a triangle representing the
average revenue per student.

i 1 2 3 Total
xi $0 $137 $170 –
P (X = xi) 0.20 0.55 0.25 1.00

Table A.20: The probability distribution for the random variable X, rep-
resenting the bookstore’s revenue from a single student.

 Example A.58 What is the average revenue per student for this course?

The expected total revenue is $11,785, and there are 100 students. Therefore the
expected revenue per student is $11, 785/100 = $117.85.

A.3.1 Expectation

We call a variable or process with a numerical outcome a random variable, and we usually
represent this random variable with a capital letter such as X, Y , or Z. The amount of money a
single student will spend on her statistics books is a random variable, and we represent it by X.

Random variable
A random process or variable with a numerical outcome.

The possible outcomes of X are labeled with a corresponding lower case letter x and sub-
scripts. For example, we write x1 = $0, x2 = $137, and x3 = $170, which occur with probabilities
0.20, 0.55, and 0.25. The distribution of X is summarized in Figure A.19 and Table A.20.

We computed the average outcome of X as $117.85 in Example A.58. We call this average the
expected value of X, denoted by E(X). The expected value of a random variable is computedE(X)

Expected
value of X

by adding each outcome weighted by its probability:

E(X) = 0× P (X = 0) + 137× P (X = 137) + 170× P (X = 170)

= 0× 0.20 + 137× 0.55 + 170× 0.25 = 117.85
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0 137 170

117.85

Figure A.21: A weight system representing the probability distribution
for X. The string holds the distribution at the mean to keep the system
balanced.

Expected value of a Discrete Random Variable
If X takes outcomes x1, ..., xk with probabilities P (X = x1), ..., P (X = xk), the expected
value of X is the sum of each outcome multiplied by its corresponding probability:

E(X) = x1 × P (X = x1) + · · ·+ xk × P (X = xk)

=

k∑
i=1

xiP (X = xi) (A.59)

The Greek letter µ may be used in place of the notation E(X).

The expected value for a random variable represents the average outcome. For example,
E(X) = 117.85 represents the average amount the bookstore expects to make from a single student,
which we could also write as µ = 117.85.

It is also possible to compute the expected value of a continuous random variable. However,
it requires a little calculus and we save it for a later class.40

In physics, the expectation holds the same meaning as the center of gravity. The distribution
can be represented by a series of weights at each outcome, and the mean represents the balancing
point. This is represented in Figures A.19 and A.21. The idea of a center of gravity also expands
to continuous probability distributions. Figure A.22 shows a continuous probability distribution
balanced atop a wedge placed at the mean.

A.3.2 Variability in random variables

Suppose you ran the university bookstore. Besides how much revenue you expect to generate, you
might also want to know the volatility (variability) in your revenue.

The variance and standard deviation can be used to describe the variability of a random
variable. Section 1.6.4 introduced a method for finding the variance and standard deviation for
a data set. We first computed deviations from the mean (xi − µ), squared those deviations, and
took an average to get the variance. In the case of a random variable, we again compute squared
deviations. However, we take their sum weighted by their corresponding probabilities, just like
we did for the expectation. This weighted sum of squared deviations equals the variance, and

40µ =
∫
xf(x)dx where f(x) represents a function for the density curve.
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µ

Figure A.22: A continuous distribution can also be balanced at its mean.

we calculate the standard deviation by taking the square root of the variance, just as we did in
Section 1.6.4.

General variance formula
If X takes outcomes x1, ..., xk with probabilities P (X = x1), ..., P (X = xk) and expected
value µ = E(X), then the variance of X, denoted by V ar(X) or the symbol σ2, is

σ2 = (x1 − µ)2 × P (X = x1) + · · ·

· · ·+ (xk − µ)2 × P (X = xk)

=

k∑
j=1

(xj − µ)2P (X = xj) (A.60)

The standard deviation of X, labeled σ, is the square root of the variance.

V ar(X)
Variance
of X

 Example A.61 Compute the expected value, variance, and standard deviation of X, the
revenue of a single statistics student for the bookstore.

It is useful to construct a table that holds computations for each outcome separately,
then add up the results.

i 1 2 3 Total
xi $0 $137 $170
P (X = xi) 0.20 0.55 0.25
xi × P (X = xi) 0 75.35 42.50 117.85

Thus, the expected value is µ = 117.85, which we computed earlier. The variance
can be constructed by extending this table:

i 1 2 3 Total
xi $0 $137 $170
P (X = xi) 0.20 0.55 0.25
xi × P (X = xi) 0 75.35 42.50 117.85
xi − µ -117.85 19.15 52.15
(xi − µ)2 13888.62 366.72 2719.62
(xi − µ)2 × P (X = xi) 2777.7 201.7 679.9 3659.3

The variance of X is σ2 = 3659.3, which means the standard deviation is σ =√
3659.3 = $60.49.
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⊙
Guided Practice A.62 The bookstore also offers a chemistry textbook for $159
and a book supplement for $41. From past experience, they know about 25% of
chemistry students just buy the textbook while 60% buy both the textbook and
supplement.41

(a) What proportion of students don’t buy either book? Assume no students buy
the supplement without the textbook.

(b) Let Y represent the revenue from a single student. Write out the probability
distribution of Y , i.e. a table for each outcome and its associated probability.

(c) Compute the expected revenue from a single chemistry student.

(d) Find the standard deviation to describe the variability associated with the rev-
enue from a single student.

A.3.3 Linear combinations of random variables

So far, we have thought of each variable as being a complete story in and of itself. Sometimes it
is more appropriate to use a combination of variables. For instance, the amount of time a person
spends commuting to work each week can be broken down into several daily commutes. Similarly,
the total gain or loss in a stock portfolio is the sum of the gains and losses in its components.

 Example A.63 John travels to work five days a week. We will use X1 to represent his
travel time on Monday, X2 to represent his travel time on Tuesday, and so on. Write an
equation using X1, ..., X5 that represents his travel time for the week, denoted by W .

His total weekly travel time is the sum of the five daily values:

W = X1 +X2 +X3 +X4 +X5

Breaking the weekly travel timeW into pieces provides a framework for understanding
each source of randomness and is useful for modeling W .

41(a) 100% - 25% - 60% = 15% of students do not buy any books for the class. Part (b) is represented
by the first two lines in the table below. The expectation for part (c) is given as the total on the line
yi × P (Y = yi). The result of part (d) is the square-root of the variance listed on in the total on the last

line: σ =
√
V ar(Y ) = $69.28.

i (scenario) 1 (noBook) 2 (textbook) 3 (both) Total
yi 0.00 159.00 200.00

P (Y = yi) 0.15 0.25 0.60
yi × P (Y = yi) 0.00 39.75 120.00 E(Y ) = 159.75

yi − E(Y ) -159.75 -0.75 40.25
(yi − E(Y ))2 25520.06 0.56 1620.06

(yi − E(Y ))2 × P (Y ) 3828.0 0.1 972.0 V ar(Y ) ≈ 4800
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 Example A.64 It takes John an average of 18 minutes each day to commute to work.
What would you expect his average commute time to be for the week?

We were told that the average (i.e. expected value) of the commute time is 18 minutes
per day: E(Xi) = 18. To get the expected time for the sum of the five days, we can
add up the expected time for each individual day:

E(W ) = E(X1 +X2 +X3 +X4 +X5)

= E(X1) + E(X2) + E(X3) + E(X4) + E(X5)

= 18 + 18 + 18 + 18 + 18 = 90 minutes

The expectation of the total time is equal to the sum of the expected individual times.
More generally, the expectation of a sum of random variables is always the sum of
the expectation for each random variable.⊙
Guided Practice A.65 Elena is selling a TV at a cash auction and also intends
to buy a toaster oven in the auction. If X represents the profit for selling the TV
and Y represents the cost of the toaster oven, write an equation that represents the
net change in Elena’s cash.42

⊙
Guided Practice A.66 Based on past auctions, Elena figures she should expect
to make about $175 on the TV and pay about $23 for the toaster oven. In total, how
much should she expect to make or spend?43

⊙
Guided Practice A.67 Would you be surprised if John’s weekly commute wasn’t
exactly 90 minutes or if Elena didn’t make exactly $152? Explain.44

Two important concepts concerning combinations of random variables have so far been in-
troduced. First, a final value can sometimes be described as the sum of its parts in an equation.
Second, intuition suggests that putting the individual average values into this equation gives the
average value we would expect in total. This second point needs clarification – it is guaranteed to
be true in what are called linear combinations of random variables.

A linear combination of two random variables X and Y is a fancy phrase to describe a
combination

aX + bY

where a and b are some fixed and known numbers. For John’s commute time, there were five
random variables – one for each work day – and each random variable could be written as having
a fixed coefficient of 1:

1X1 + 1X2 + 1X3 + 1X4 + 1X5

For Elena’s net gain or loss, the X random variable had a coefficient of +1 and the Y random
variable had a coefficient of -1.

When considering the average of a linear combination of random variables, it is safe to plug
in the mean of each random variable and then compute the final result. For a few examples of
nonlinear combinations of random variables – cases where we cannot simply plug in the means –
see the footnote.45

42She will make X dollars on the TV but spend Y dollars on the toaster oven: X − Y .
43E(X − Y ) = E(X)− E(Y ) = 175− 23 = $152. She should expect to make about $152.
44No, since there is probably some variability. For example, the traffic will vary from one day to next,

and auction prices will vary depending on the quality of the merchandise and the interest of the attendees.
45If X and Y are random variables, consider the following combinations: X1+Y , X × Y , X/Y . In such

cases, plugging in the average value for each random variable and computing the result will not generally
lead to an accurate average value for the end result.
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Linear combinations of random variables and the average result
If X and Y are random variables, then a linear combination of the random variables is
given by

aX + bY (A.68)

where a and b are some fixed numbers. To compute the average value of a linear combi-
nation of random variables, plug in the average of each individual random variable and
compute the result:

a× E(X) + b× E(Y )

Recall that the expected value is the same as the mean, e.g. E(X) = µX .

 Example A.69 Leonard has invested $6000 in Google Inc. (stock ticker: GOOG) and
$2000 in Exxon Mobil Corp. (XOM). If X represents the change in Google’s stock next
month and Y represents the change in Exxon Mobil stock next month, write an equation
that describes how much money will be made or lost in Leonard’s stocks for the month.

For simplicity, we will suppose X and Y are not in percents but are in decimal form
(e.g. if Google’s stock increases 1%, then X = 0.01; or if it loses 1%, then X = −0.01).
Then we can write an equation for Leonard’s gain as

$6000×X + $2000× Y

If we plug in the change in the stock value for X and Y , this equation gives the change
in value of Leonard’s stock portfolio for the month. A positive value represents a gain,
and a negative value represents a loss.⊙
Guided Practice A.70 Suppose Google and Exxon Mobil stocks have recently
been rising 2.1% and 0.4% per month, respectively. Compute the expected change in
Leonard’s stock portfolio for next month.46

⊙
Guided Practice A.71 You should have found that Leonard expects a positive
gain in Guided Practice A.70. However, would you be surprised if he actually had a
loss this month?47

A.3.4 Variability in linear combinations of random variables

Quantifying the average outcome from a linear combination of random variables is helpful, but
it is also important to have some sense of the uncertainty associated with the total outcome of
that combination of random variables. The expected net gain or loss of Leonard’s stock portfolio
was considered in Guided Practice A.70. However, there was no quantitative discussion of the
volatility of this portfolio. For instance, while the average monthly gain might be about $134
according to the data, that gain is not guaranteed. Figure A.23 shows the monthly changes in a
portfolio like Leonard’s during the 36 months from 2009 to 2011. The gains and losses vary widely,
and quantifying these fluctuations is important when investing in stocks.

Just as we have done in many previous cases, we use the variance and standard deviation
to describe the uncertainty associated with Leonard’s monthly returns. To do so, the variances of
each stock’s monthly return will be useful, and these are shown in Table A.24. The stocks’ returns
are nearly independent.

46E($6000×X + $2000× Y ) = $6000× 0.021 + $2000× 0.004 = $134.
47No. While stocks tend to rise over time, they are often volatile in the short term.
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Monthly returns (2009−2011)
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Figure A.23: The change in a portfolio like Leonard’s for the 36 months
from 2009 to 2011, where $6000 is in Google’s stock and $2000 is in Exxon
Mobil’s.

Mean (x̄) Standard deviation (s) Variance (s2)
GOOG 0.0210 0.0846 0.0072
XOM 0.0038 0.0519 0.0027

Table A.24: The mean, standard deviation, and variance of the GOOG and
XOM stocks. These statistics were estimated from historical stock data, so
notation used for sample statistics has been used.

Here we use an equation from probability theory to describe the uncertainty of Leonard’s
monthly returns; we leave the proof of this method to a dedicated probability course. The variance
of a linear combination of random variables can be computed by plugging in the variances of the
individual random variables and squaring the coefficients of the random variables:

V ar(aX + bY ) = a2 × V ar(X) + b2 × V ar(Y )

It is important to note that this equality assumes the random variables are independent; if inde-
pendence doesn’t hold, then more advanced methods are necessary. This equation can be used to
compute the variance of Leonard’s monthly return:

V ar(6000×X + 2000× Y ) = 60002 × V ar(X) + 20002 × V ar(Y )

= 36, 000, 000× 0.0072 + 4, 000, 000× 0.0027

= 270, 000

The standard deviation is computed as the square root of the variance:
√

270, 000 = $520. While
an average monthly return of $134 on an $8000 investment is nothing to scoff at, the monthly
returns are so volatile that Leonard should not expect this income to be very stable.

Variability of linear combinations of random variables
The variance of a linear combination of random variables may be computed by squaring
the constants, substituting in the variances for the random variables, and computing the
result:

V ar(aX + bY ) = a2 × V ar(X) + b2 × V ar(Y )

This equation is valid as long as the random variables are independent of each other. The
standard deviation of the linear combination may be found by taking the square root of
the variance.
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 Example A.72 Suppose John’s daily commute has a standard deviation of 4 minutes.
What is the uncertainty in his total commute time for the week?

The expression for John’s commute time was

X1 +X2 +X3 +X4 +X5

Each coefficient is 1, and the variance of each day’s time is 42 = 16. Thus, the
variance of the total weekly commute time is

variance = 12 × 16 + 12 × 16 + 12 × 16 + 12 × 16 + 12 × 16 = 5× 16 = 80

standard deviation =
√

variance =
√

80 = 8.94

The standard deviation for John’s weekly work commute time is about 9 minutes.⊙
Guided Practice A.73 The computation in Example A.72 relied on an important
assumption: the commute time for each day is independent of the time on other days
of that week. Do you think this is valid? Explain.48

⊙
Guided Practice A.74 Consider Elena’s two auctions from Guided Practice A.65
on page 320. Suppose these auctions are approximately independent and the vari-
ability in auction prices associated with the TV and toaster oven can be described
using standard deviations of $25 and $8. Compute the standard deviation of Elena’s
net gain.49

Consider again Guided Practice A.74. The negative coefficient for Y in the linear combination
was eliminated when we squared the coefficients. This generally holds true: negatives in a linear
combination will have no impact on the variability computed for a linear combination, but they
do impact the expected value computations.

48One concern is whether traffic patterns tend to have a weekly cycle (e.g. Fridays may be worse than
other days). If that is the case, and John drives, then the assumption is probably not reasonable. However,
if John walks to work, then his commute is probably not affected by any weekly traffic cycle.

49The equation for Elena can be written as

(1)×X + (−1)× Y

The variances of X and Y are 625 and 64. We square the coefficients and plug in the variances:

(1)2 × V ar(X) + (−1)2 × V ar(Y ) = 1× 625 + 1× 64 = 689

The variance of the linear combination is 689, and the standard deviation is the square root of 689: about
$26.25.



Appendix B

End of chapter exercise
solutions

1 Introduction to data

1.1 (a) Treatment: 10/43 = 0.23→ 23%. Con-
trol: 2/46 = 0.04 → 4%. (b) There is a 19%
difference between the pain reduction rates in
the two groups. At first glance, it appears pa-
tients in the treatment group are more likely to
experience pain reduction from the acupuncture
treatment. (c) Answers may vary but should be
sensible. Two possible answers: 1Though the
groups’ difference is big, I’m skeptical the re-
sults show a real difference and think this might
be due to chance. 2The difference in these rates
looks pretty big, so I suspect acupuncture is hav-
ing a positive impact on pain.

1.3 (a-i) 143,196 eligible study subjects born
in Southern California between 1989 and 1993.
(a-ii) Measurements of carbon monoxide, nitro-
gen dioxide, ozone, and particulate matter less
than 10µg/m3 (PM10) collected at air-quality-
monitoring stations as well as length of gesta-
tion. These are continuous numerical variables.
(a-iii) The research question: “Is there an as-
sociation between air pollution exposure and
preterm births?” (b-i) 600 adult patients aged
18-69 years diagnosed and currently treated for
asthma. (b-ii) The variables were whether or
not the patient practiced the Buteyko method
(categorical) and measures of quality of life, ac-
tivity, asthma symptoms and medication reduc-
tion of the patients (categorical, ordinal). It
may also be reasonable to treat the ratings on a
scale of 1 to 10 as discrete numerical variables.
(b-iii) The research question: “Do asthmatic pa-

tients who practice the Buteyko method experi-
ence improvement in their condition?”

1.5 (a) 50 × 3 = 150. (b) Four continuous
numerical variables: sepal length, sepal width,
petal length, and petal width. (c) One categor-
ical variable, species, with three levels: setosa,
versicolor, and virginica.

1.7 (a) Population of interest: all births in
Southern California. Sample: 143,196 births be-
tween 1989 and 1993 in Southern California. If
births in this time span can be considered to
be representative of all births, then the results
are generalizable to the population of Southern
California. However, since the study is observa-
tional, the findings do not imply causal relation-
ships. (b) Population: all 18-69 year olds diag-
nosed and currently treated for asthma. Sam-
ple: 600 adult patients aged 18-69 years diag-
nosed and currently treated for asthma. Since
the sample consists of voluntary patients, the
results cannot necessarily be generalized to the
population at large. However, since the study
is an experiment, the findings can be used to
establish causal relationships.

1.9 (a) Explanatory: number of study hours
per week. Response: GPA. (b) There is a
slight positive relationship between the two vari-
ables. One respondent reported a GPA above
4.0, which is a data error. There are also a few
respondents who reported unusually high study
hours (60 and 70 hours/week). The variabil-
ity in GPA also appears to be larger for stu-
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dents who study less than those who study more.
Since the data become sparse as the number of
study hours increases, it is somewhat difficult
to evaluate the strength of the relationship and
also the variability across different numbers of
study hours. (c) Observational. (d) Since this
is an observational study, a causal relationship
is not implied.

1.11 (a) Observational. (b) The professor sus-
pects students in a given section may have simi-
lar feelings about the course. To ensure each sec-
tion is reasonably represented, she may choose
to randomly select a fixed number of students,
say 10, from each section for a total sample size
of 40 students. Since a random sample of fixed
size was taken within each section in this sce-
nario, this represents stratified sampling.

1.13 Sampling from the phone book would miss
unlisted phone numbers, so this would result
in bias. People who do not have their num-
bers listed may share certain characteristics, e.g.
consider that cell phones are not listed in phone
books, so a sample from the phone book would
not necessarily be a representative of the popu-
lation.

1.15 The estimate will be biased, and it will
tend to overestimate the true family size. For
example, suppose we had just two families: the
first with 2 parents and 5 children, and the sec-
ond with 2 parents and 1 child. Then if we draw
one of the six children at random, 5 times out
of 6 we would sample the larger family

1.17 (a) No, this is an observational study.
(b) This statement is not justified; it implies a
causal association between sleep disorders and
bullying. However, this was an observational
study. A better conclusion would be “School
children identified as bullies are more likely to
suffer from sleep disorders than non-bullies.”

1.19 (a) Experiment, as the treatment was as-
signed to each patient. (b) Response: Duration
of the cold. Explanatory: Treatment, with 4
levels: placebo, 1g, 3g, 3g with additives. (c) Pa-
tients were blinded. (d) Double-blind with re-
spect to the researchers evaluating the patients,
but the nurses who briefly interacted with pa-
tients during the distribution of the medica-
tion were not blinded. We could say the study
was partly double-blind. (e) No. The patients
were randomly assigned to treatment groups
and were blinded, so we would expect about an
equal number of patients in each group to not
adhere to the treatment.

1.21 (a) Experiment. (b) Treatment is exercise
twice a week. Control is no exercise. (c) Yes, the
blocking variable is age. (d) No. (e) This is an
experiment, so a causal conclusion is reasonable.
Since the sample is random, the conclusion can
be generalized to the population at large. How-
ever, we must consider that a placebo effect is
possible. (f) Yes. Randomly sampled people
should not be required to participate in a clinical
trial, and there are also ethical concerns about
the plan to instruct one group not to partici-
pate in a healthy behavior, which in this case is
exercise.

1.23 (a) Positive association: mammals with
longer gestation periods tend to live longer as
well. (b) Association would still be positive.
(c) No, they are not independent. See part (a).

1.25 (a) 1/linear and 3/nonlinear. (b) 4/some
curvature (nonlinearity) may be present on the
right side. “Linear” would also be acceptable
for the type of relationship for plot 4. (c) 2.

1.27 (a) Decrease: the new score is smaller
than the mean of the 24 previous scores.
(b) Calculate a weighted mean. Use a weight
of 24 for the old mean and 1 for the new mean:
(24 × 74 + 1 × 64)/(24 + 1) = 73.6. There are
other ways to solve this exercise that do not use
a weighted mean. (c) The new score is more
than 1 standard deviation away from the previ-
ous mean, so increase.

1.29 Both distributions are right skewed and
bimodal with modes at 10 and 20 cigarettes;
note that people may be rounding their an-
swers to half a pack or a whole pack. The me-
dian of each distribution is between 10 and 15
cigarettes. The middle 50% of the data (the
IQR) appears to be spread equally in each group
and have a width of about 10 to 15. There are
potential outliers above 40 cigarettes per day. It
appears that respondents who smoke only a few
cigarettes (0 to 5) smoke more on the weekdays
than on weekends.

1.31 (a) x̄amtWeekends = 20, x̄amtWeekdays =
16. (b) samtWeekends = 0, samtWeekdays = 4.18.
In this very small sample, higher on weekdays.

1.33 (a) Both distributions have the same me-
dian and IQR. (b) Second distribution has a
higher median and higher IQR. (c) Second dis-
tribution has higher median. IQRs are equal.
(d) Second distribution has higher median and
larger IQR.
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1.35
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1.37 Descriptions will vary a little. (a) 2. Uni-
modal, symmetric, centered at 60, standard de-
viation of roughly 3. (b) 3. Symmetric and ap-
proximately evenly distributed from 0 to 100.
(c) 1. Right skewed, unimodal, centered at
about 1.5, with most observations falling be-
tween 0 and 3. A very small fraction of obser-
vations exceed a value of 5.

1.39 The histogram shows that the distribu-
tion is bimodal, which is not apparent in the
box plot. The box plot makes it easy to iden-
tify more precise values of observations outside
of the whiskers.

1.41 (a) The median is better; the mean is sub-
stantially affected by the two extreme observa-
tions. (b) The IQR is better; the standard de-
viation, like the mean, is substantially affected

by the two high salaries.

1.43 The distribution is unimodal and symmet-
ric with a mean of about 25 minutes and a stan-
dard deviation of about 5 minutes. There does
not appear to be any counties with unusually
high or low mean travel times. Since the dis-
tribution is already unimodal and symmetric, a
log transformation is not necessary.

1.45 Answers will vary. There are pockets of
longer travel time around DC, Southeastern NY,
Chicago, Minneapolis, Los Angeles, and many
other big cities. There is also a large section
of shorter average commute times that overlap
with farmland in the Midwest. Many farmers’
homes are adjacent to their farmland, so their
commute would be 0 minutes, which may ex-
plain why the average commute time for these
counties is relatively low.

1.47 (a) We see the order of the categories
and the relative frequencies in the bar plot.
(b) There are no features that are apparent in
the pie chart but not in the bar plot. (c) We
usually prefer to use a bar plot as we can also
see the relative frequencies of the categories in
this graph.

1.49 The vertical locations at which the ideo-
logical groups break into the Yes, No, and Not
Sure categories differ, which indicates the vari-
ables are dependent.

2 Foundation for inference

2.1 (a) False. Instead of comparing counts,
we should compare percentages. (b) True. (c)
False. We cannot infer a causal relationship
from an association in an observational study.
However, we can say the drug a person is on af-
fects his risk in this case, as he chose that drug
and his choice may be associated with other vari-
ables, which is why part (b) is true. The differ-
ence in these statements is subtle but important.
(d) True.

2.3 (a) Proportion who had cardiovascular
problems: 7,979

227,571
≈ 0.035 (b) Expected number

of cardiovascular problems in the rosiglitazone
group if having cardiovascular problems and
treatment were independent can be calculated
as the number of patients in that group multi-
plied by the overall rate of cardiovascular prob-
lems in the study: 67,593× 7,979

227,571
≈ 2370. (c-i)

H0: The treatment and cardiovascular problems
are independent. They have no relationship,

and the difference in incidence rates between the
rosiglitazone and pioglitazone groups is due to
chance. HA: The treatment and cardiovascular
problems are not independent. The difference
in the incidence rates between the rosiglitazone
and pioglitazone groups is not due to chance,
and rosiglitazone is associated with an increased
risk of serious cardiovascular problems. [Okay if
framed a little more generally!] (c-ii) A higher
number of patients with cardiovascular prob-
lems in the rosiglitazone group than expected
under the assumption of independence would
provide support for the alternative hypothesis.
This would suggest that rosiglitazone increases
the risk of such problems. (c-iii) In the actual
study, we observed 2,593 cardiovascular events
in the rosiglitazone group. In the 1,000 simu-
lations under the independence model, we ob-
served somewhat less than 2,593 in all but one
or two simulations, which suggests that the ac-
tual results did not come from the independence
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model. That is, the analysis provides strong ev-
idence that the variables are not independent,
and we reject the independence model in favor
of the alternative. The study’s results provide
strong evidence that rosiglitazone is associated
with an increased risk of cardiovascular prob-
lems.

2.5 The subscript pr corresponds to provoca-
tive and con to conservative. (a)H0 : ppr = pcon.
HA : ppr 6= pcon. (b) -0.35. (c) The left tail
for the p-value is calculated by adding up the
two left bins: 0.005 + 0.015 = 0.02. Doubling
the one tail, the p-value is 0.04. (Students may
have approximate results, and a small number
of students may have a p-value of about 0.05.)
Since the p-value is low, we reject H0. The data
provide strong evidence that people react differ-
ently under the two scenarios.

2.7 The primary concern is confirmation bias.
If researchers look only for what they suspect to
be true using a one-sided test, then they are for-
mally excluding from consideration the possibil-
ity that the opposite result is true. Additionally,
if other researchers believe the opposite possibil-
ity might be true, they would be very skeptical
of the one-sided test.

2.9 (a) H0 : p = 0.69. HA : p 6= 0.69.
(b) p̂ = 17

30
= 0.57. (c) The success-failure condi-

tion is not satisfied; note that it is appropriate
to use the null value (p0 = 0.69) to compute
the expected number of successes and failures.
(d) Answers may vary. Each student can be
represented with a card. Take 100 cards, 69
black cards representing those who follow the
news about Egypt and 31 red cards represent-
ing those who do not. Shuffle the cards and
draw with replacement (shuffling each time in
between draws) 30 cards representing the 30
high school students. Calculate the proportion
of black cards in this sample, p̂sim, i.e. the pro-
portion of those who follow the news in the sim-
ulation. Repeat this many times (e.g. 10,000
times) and plot the resulting sample propor-
tions. The p-value will be two times the propor-
tion of simulations where p̂sim ≤ 0.57. (Note:
we would generally use a computer to perform
these simulations.) (e) The p-value is about
0.001 + 0.005 + 0.020 + 0.035 + 0.075 = 0.136,
meaning the two-sided p-value is about 0.272.
Your p-value may vary slightly since it is based
on a visual estimate. Since the p-value is greater
than 0.05, we fail to reject H0. The data do
not provide strong evidence that the proportion

of high school students who followed the news
about Egypt is different than the proportion of
American adults who did.

2.11 Each point represents a sample propor-
tion from a simulation. The distributions be-
come (1) smoother / look less discrete, (2) have
less variability, and (3) more symmetric (vs.
right-skewed). One characteristic that does not
change: the distributions are all centered at the
same location, p = 0.1.

2.13 Each point represents a sample propor-
tion from a simulation. The distributions be-
come (1) smoother / look less discrete, (2) have
less variability, and (3) more symmetric (vs.
left-skewed). One characteristic that does not
change: the distributions are all centered at the
same location, p = 0.95.

2.15 (a) 8.85%. (b) 6.94%. (c) 58.86%.
(d) 4.56%.

(a)
−1.35 0

(b)
0 1.48

(c)
−0.4 1.5

(d)
−2 0 2

2.17 (a) Verbal: N(µ = 462, σ = 119), Quant:
N(µ = 584, σ = 151). (b) ZV R = 1.33, ZQR =
0.57.

VR

z = 1.33

QR

z = 0.57

(c) She scored 1.33 standard deviations above
the mean on the Verbal Reasoning section and
0.57 standard deviations above the mean on
the Quantitative Reasoning section. (d) She
did better on the Verbal Reasoning section
since her Z score on that section was higher.
(e) PercV R = 0.9082 ≈ 91%, PercQR =
0.7157 ≈ 72%. (f) 100%− 91% = 9% did better
than her on VR, and 100% − 72% = 28% did
better than her on QR. (g) We cannot compare
the raw scores since they are on different scales.
Comparing her percentile scores is more appro-
priate when comparing her performance to oth-
ers. (h) Answer to part (b) would not change
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as Z scores can be calculated for distributions
that are not normal. However, we could not an-
swer parts (c)-(f) since we cannot use the normal
probability table to calculate probabilities and
percentiles without a normal model.

2.19 (a) Z = 0.84, which corresponds to 711 on
QR. (b) Z = −0.52, which corresponds to 400
on VR.

2.21 (a) Z = 1.2 → 0.1151. (b) Z = −1.28 →
70.6◦F or colder.

2.23 (a) N(25, 2.78). (b) Z = 1.08 → 0.1401.
(c) The answers are very close because only the
units were changed. (The only reason why they
are a little different is because 28◦C is 82.4◦F,
not precisely 83◦F.)

2.25 (a) Z = 0.67. (b) µ = $1650, x = $1800.
(c) 0.67 = 1800−1650

σ
→ σ = $223.88.

2.27 Z = 1.56→ 0.0594, i.e. 6%.

2.29 (a) Z = 0.73→ 0.2327. (b) If you are bid-
ding on only one auction and set a low maximum
bid price, someone will probably outbid you. If
you set a high maximum bid price, you may win
the auction but pay more than is necessary. If
bidding on more than one auction, and you set
your maximum bid price very low, you probably
won’t win any of the auctions. However, if the
maximum bid price is even modestly high, you
are likely to win multiple auctions. (c) An an-
swer roughly equal to the 10th percentile would
be reasonable. Regrettably, no percentile cut-
off point guarantees beyond any possible event
that you win at least one auction. However, you
may pick a higher percentile if you want to be
more sure of winning an auction. (d) Answers
will vary a little but should correspond to the
answer in part (c). We use the 10th percentile:
Z = −1.28→ $69.80.

2.31 14/20 = 70% are within 1 SD. Within 2
SD: 19/20 = 95%. Within 3 SD: 20/20 = 100%.
They follow this rule closely.

2.33 The distribution is unimodal and symmet-
ric. The superimposed normal curve approxi-
mates the distribution pretty well. The points
on the normal probability plot also follow a rel-
atively straight line. There is one slightly dis-
tant observation on the lower end, but it is not
extreme. The data appear to be reasonably ap-
proximated by the normal distribution.

2.35 (a) H0: The treatment and cardiovas-
cular problems are independent. They have
no relationship, and the difference in incidence

rates between the rosiglitazone and pioglitazone
groups is due to chance. pr − pp = 0. HA:
The treatment and cardiovascular problems are
not independent. The difference in the inci-
dence rates between the rosiglitazone and piogli-
tazone groups is not due to chance. pr−pp 6= 0.
(b) p̂r−p̂p = 2593

67593
− 5386

159978
= 0.00469. (c) First,

draw a picture. Here just the one tail is shown,
but the p-value will be both tails:

−0.002 0.000 0.002 0.004

●

The Z score is given by Z = 0.00469−0
0.00084

= 5.58.
This value is so large that the one tail area is
off the normal probability table, so it’s area is
≤ 0.0002, so the two-tailed area for the p-value
is ≤ 0.0004 (double the one tail area!). (d) We
reject the null hypothesis. The data provide
strong evidence that there is a difference in the
rates of cardiovascular disease for Rosiglitazon
and Pioglitazone and that the rate is higher in
Rosiglitazon.

2.37 Recall that the general formula is

point estimate± z? × SE

First, identify the three different values. The
point estimate is 45%, z? = 1.96 for a 95% con-
fidence level, and SE = 1.2%. Then, plug the
values into the formula:

45%± 1.96× 1.2% → (42.6%, 47.4%)

We are 95% confident that the proportion of US
adults who live with one or more chronic condi-
tions is between 42.6% and 47.4%.

2.39 (a) False. Confidence intervals provide a
range of plausible values, and sometimes the
truth is missed. A 95% confidence interval
“misses” about 5% of the time. (b) True. Notice
that the description focuses on the true popula-
tion value. (c) True. If we examine the 95% con-
fidence interval computed in Exercise 2.37, we
can see that 50% is not included in this interval.
This means that in a hypothesis test, we would
reject the null hypothesis that the proportion is
0.5. (d) False. The standard error describes the
uncertainty in the overall estimate from natural
fluctuations due to randomness, not the uncer-
tainty corresponding to individuals’ responses.
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3 Inference for categorical data

3.1 (a) False. Doesn’t satisfy success-failure
condition. (b) True. The success-failure condi-
tion is not satisfied. In most samples we would
expect p̂ to be close to 0.08, the true popula-
tion proportion. While p̂ can be much above
0.08, it is bound below by 0, suggesting it would
take on a right skewed shape. Plotting the sam-
pling distribution would confirm this suspicion.
(c) False. SEp̂ = 0.0243, and p̂ = 0.12 is only
0.12−0.08
0.0243

= 1.65 SEs away from the mean, which
would not be considered unusual. (d) True.
p̂ = 0.12 is 2.32 standard errors away from
the mean, which is often considered unusual.
(e) False. Decreases the SE by a factor of 1/

√
2.

3.3 (a) True. See the reasoning of 6.1(b).
(b) True. We take the square root of the sample
size in the SE formula. (c) True. The inde-
pendence and success-failure conditions are sat-
isfied. (d) True. The independence and success-
failure conditions are satisfied.

3.5 (a) False. A confidence interval is con-
structed to estimate the population proportion,
not the sample proportion. (b) True. 95% CI:
70% ± 8%. (c) True. By the definition of a
confidence interval. (d) True. Quadrupling the
sample size decreases the SE and ME by a fac-
tor of 1/

√
4. (e) True. The 95% CI is entirely

above 50%.

3.7 With a random sample from < 10% of
the population, independence is satisfied. The
success-failure condition is also satisfied. ME =

z?
√

p̂(1−p̂)
n

= 1.96
√

0.56×0.44
600

= 0.0397 ≈ 4%

3.9 (a) Proportion of graduates from this uni-
versity who found a job within one year of
graduating. p̂ = 348/400 = 0.87. (b) This
is a random sample from less than 10% of
the population, so the observations are inde-
pendent. Success-failure condition is satisfied:
348 successes, 52 failures, both well above 10.
(c) (0.8371, 0.9029). We are 95% confident that
approximately 84% to 90% of graduates from
this university found a job within one year of
completing their undergraduate degree. (d) 95%
of such random samples would produce a 95%
confidence interval that includes the true pro-
portion of students at this university who found
a job within one year of graduating from college.
(e) (0.8267, 0.9133). Similar interpretation as
before. (f) 99% CI is wider, as we are more
confident that the true proportion is within the

interval and so need to cover a wider range.

3.11 (a) No. The sample only represents stu-
dents who took the SAT, and this was also an
online survey. (b) (0.5289, 0.5711). We are 90%
confident that 53% to 57% of high school seniors
who took the SAT are fairly certain that they
will participate in a study abroad program in
college. (c) 90% of such random samples would
produce a 90% confidence interval that includes
the true proportion. (d) Yes. The interval lies
entirely above 50%.

3.13 (a) This is an appropriate setting for a
hypothesis test. H0 : p = 0.50. HA : p > 0.50.
Both independence and the success-failure con-
dition are satisfied. Z = 1.12 → p-value =
0.1314. Since the p-value > α = 0.05, we fail
to reject H0. The data do not provide strong
evidence in favor of the claim. (b) Yes, since we
did not reject H0 in part (a).

3.15 (a) H0 : p = 0.38. HA : p 6= 0.38. In-
dependence (random sample, < 10% of popula-
tion) and the success-failure condition are sat-
isfied. Z = −20.5 → p-value ≈ 0. Since the
p-value is very small, we reject H0. The data
provide strong evidence that the proportion of
Americans who only use their cell phones to ac-
cess the internet is different than the Chinese
proportion of 38%, and the data indicate that
the proportion is lower in the US. (b) If in fact
38% of Americans used their cell phones as a
primary access point to the internet, the prob-
ability of obtaining a random sample of 2,254
Americans where 17% or less or 59% or more use
their only their cell phones to access the internet
would be approximately 0. (c) (0.1545, 0.1855).
We are 95% confident that approximately 15.5%
to 18.6% of all Americans primarily use their cell
phones to browse the internet.

3.17 (a) H0 : p = 0.5. HA : p > 0.5. Indepen-
dence (random sample, < 10% of population)
is satisfied, as is the success-failure conditions
(using p0 = 0.5, we expect 40 successes and 40
failures). Z = 2.91 → p-value = 0.0018. Since
the p-value < 0.05, we reject the null hypothe-
sis. The data provide strong evidence that the
rate of correctly identifying a soda for these peo-
ple is significantly better than just by random
guessing. (b) If in fact people cannot tell the dif-
ference between diet and regular soda and they
randomly guess, the probability of getting a ran-
dom sample of 80 people where 53 or more iden-
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tify a soda correctly would be 0.0018.

3.19 (a) Independence is satisfied (random
sample from < 10% of the population), as is
the success-failure condition (40 smokers, 160
non-smokers). The 95% CI: (0.145, 0.255). We
are 95% confident that 14.5% to 25.5% of all
students at this university smoke. (b) We want
z?SE to be no larger than 0.02 for a 95% con-
fidence level. We use z? = 1.96 and plug in the
point estimate p̂ = 0.2 within the SE formula:
1.96

√
0.2(1− 0.2)/n ≤ 0.02. The sample size n

should be at least 1,537.

3.21 The margin of error, which is computed
as z?SE, must be smaller than 0.01 for a
90% confidence level. We use z? = 1.65 for
a 90% confidence level, and we can use the
point estimate p̂ = 0.52 in the formula for SE.
1.65

√
0.52(1− 0.52)/n ≤ 0.01. Therefore, the

sample size n must be at least 6,796.

3.23 This is not a randomized experiment, and
it is unclear whether people would be affected
by the behavior of their peers. That is, indepen-
dence may not hold. Additionally, there are only
5 interventions under the provocative scenario,
so the success-failure condition does not hold.
Even if we consider a hypothesis test where we
pool the proportions, the success-failure condi-
tion will not be satisfied. Since one condition is
questionable and the other is not satisfied, the
difference in sample proportions will not follow
a nearly normal distribution.

3.25 (a) False. The entire confidence interval is
above 0. (b) True. (c) True. (d) True. (e) False.
It is simply the negated and reordered values: (-
0.06,-0.02).

3.27 (a) (0.23, 0.33). We are 95% confident
that the proportion of Democrats who support
the plan is 23% to 33% higher than the propor-
tion of Independents who do. (b) True.

3.29 (a) College grads: 23.7%. Non-college
grads: 33.7%. (b) Let pCG and pNCG represent
the proportion of college graduates and non-
college graduates who responded “do not know”.
H0 : pCG = pNCG. HA : pCG 6= pNCG. Inde-
pendence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p̂ = 235/827 = 0.284), is also satis-
fied. Z = −3.18 → p-value = 0.0014. Since the
p-value is very small, we reject H0. The data
provide strong evidence that the proportion of
college graduates who do not have an opinion

on this issue is different than that of non-college
graduates. The data also indicate that fewer
college grads say they “do not know” than non-
college grads (i.e. the data indicate the direction
after we reject H0).

3.31 (a) College grads: 35.2%. Non-college
grads: 33.9%. (b) Let pCG and pNCG rep-
resent the proportion of college graduates and
non-college grads who support offshore drilling.
H0 : pCG = pNCG. HA : pCG 6= pNCG. In-
dependence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p̂ = 286/827 = 0.346), is also satis-
fied. Z = 0.39 → p-value = 0.6966. Since the
p-value > α (0.05), we fail to reject H0. The
data do not provide strong evidence of a differ-
ence between the proportions of college gradu-
ates and non-college graduates who support off-
shore drilling in California.

3.33 Subscript C means control group. Sub-
script T means truck drivers. (a) H0 : pC =
pT . HA : pC 6= pT . Independence is satis-
fied (random samples, < 10% of the popula-
tion), as is the success-failure condition, which
we would check using the pooled proportion
(p̂ = 70/495 = 0.141). Z = −1.58 → p-value
= 0.1164. Since the p-value is high, we fail to
reject H0. The data do not provide strong evi-
dence that the rates of sleep deprivation are dif-
ferent for non-transportation workers and truck
drivers.

3.35 (a) Summary of the study:

Virol. failure
Yes No Total

Treatment
Nevaripine 26 94 120
Lopinavir 10 110 120
Total 36 204 240

(b) H0 : pN = pL. There is no difference in vi-
rologic failure rates between the Nevaripine and
Lopinavir groups. HA : pN 6= pL. There is
some difference in virologic failure rates between
the Nevaripine and Lopinavir groups. (c) Ran-
dom assignment was used, so the observations in
each group are independent. If the patients in
the study are representative of those in the gen-
eral population (something impossible to check
with the given information), then we can also
confidently generalize the findings to the pop-
ulation. The success-failure condition, which
we would check using the pooled proportion
(p̂ = 36/240 = 0.15), is satisfied. Z = 3.04→ p-
value = 0.0024. Since the p-value is low, we re-
ject H0. There is strong evidence of a difference
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in virologic failure rates between the Nevarip-
ine and Lopinavir groups do not appear to be
independent.

3.37 (a) False. The chi-square distribution
has one parameter called degrees of freedom.
(b) True. (c) True. (d) False. As the degrees
of freedom increases, the shape of the chi-square
distribution becomes more symmetric.

3.39 (a) H0: The distribution of the format
of the book used by the students follows the
professor’s predictions. HA: The distribution
of the format of the book used by the stu-
dents does not follow the professor’s predictions.
(b) Ehard copy = 126 × 0.60 = 75.6. Eprint =
126× 0.25 = 31.5. Eonline = 126× 0.15 = 18.9.
(c) Independence: The sample is not random.
However, if the professor has reason to believe
that the proportions are stable from one term
to the next and students are not affecting each
other’s study habits, independence is probably
reasonable. Sample size: All expected counts
are at least 5. Degrees of freedom: df = k−1 =
3−1 = 2 is more than 1. (d) X2 = 2.32, df = 2,
p-value > 0.3. (e) Since the p-value is large,
we fail to reject H0. The data do not provide
strong evidence indicating the professor’s pre-
dictions were statistically inaccurate.

3.41 H0: The opinion of college grads and non-
grads is not different on the topic of drilling for
oil and natural gas off the coast of California.
HA: Opinions regarding the drilling for oil and
natural gas off the coast of California has an

association with earning a college degree.

Erow 1,col 1 = 151.5 Erow 1,col 2 = 134.5

Erow 2,col 1 = 162.1 Erow 2,col 2 = 143.9

Erow 3,col 1 = 124.5 Erow 3,col 2 = 110.5

Independence: The samples are both random,
unrelated, and from less than 10% of the popu-
lation, so independence between observations is
reasonable. Sample size: All expected counts
are at least 5. Degrees of freedom: df =
(R − 1) × (C − 1) = (3 − 1) × (2 − 1) = 2,
which is greater than 1. X2 = 11.47, df = 2
→ 0.001 < p-value < 0.005. Since the p-value
< α, we reject H0. There is strong evidence
that there is an association between support for
off-shore drilling and having a college degree.

3.43 (a) H0 : There is no relationship between
gender and how informed Facebook users are
about adjusting their privacy settings. HA :
There is a relationship between gender and how
informed Facebook users are about adjusting
their privacy settings. (b) The expected counts:

Erow 1,col 1 = 296.6 Erow 1,col 2 = 369.3

Erow 2,col 1 = 54.8 Erow 2,col 2 = 68.2

Erow 3,col 1 = 7.6 Erow 3,col 2 = 9.4

The sample is random, all expected counts are
above 5, and df = (3− 1)× (2− 1) = 2 > 1, so
we may proceed with the test.

3.45 It is not appropriate. There are only 9
successes in the sample, so the success-failure
condition is not met.

4 Inference for numerical data

4.1 (a) df = 6 − 1 = 5, t?5 = 2.02 (col-
umn with two tails of 0.10, row with df = 5).
(b) df = 21 − 1 = 5, t?20 = 2.53 (column with
two tails of 0.02, row with df = 20). (c) df = 28,
t?28 = 2.05. (d) df = 11, t?11 = 3.11.

4.3 The mean is the midpoint: x̄ = 20. Iden-
tify the margin of error: ME = 1.015, then use
t?35 = 2.03 and SE = s/

√
n in the formula for

margin of error to identify s = 3.

4.5 (a) H0: µ = 8 (New Yorkers sleep 8 hrs
per night on average.) HA: µ 6= 8 (New Yorkers
sleep an amount different than 8 hrs per night
on average.) (b) Independence: The sample is
random and from less than 10% of New York-
ers. The sample is small, so we will use a t

distribution. For this size sample, slight skew
is acceptable, and the min/max suggest there
is not much skew in the data. T = −1.75.
df = 25− 1 = 24. (c) 0.05 < p-value < 0.10. If
in fact the true population mean of the amount
New Yorkers sleep per night was 8 hours, the
probability of getting a random sample of 25
New Yorkers where the average amount of sleep
is 7.73 hrs per night or less is between 0.05 and
0.10. (d) Since p-value > 0.05, we do not reject
H0. The data do not provide strong evidence
that New Yorkers sleep an amount different than
8 hours per night on average. (e) Yes, as we re-
jected H0.
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4.7 t?19 is 1.73 for a one-tail. We want the lower
tail, so set -1.73 equal to the T score, then solve
for x̄: 56.91.

4.9 (a) For each observation in one data set,
there is exactly one specially-corresponding ob-
servation in the other data set for the same
geographic location. The data are paired.
(b) H0 : µdiff = 0 (There is no difference in av-
erage daily high temperature between January
1, 1968 and January 1, 2008 in the continental
US.) HA : µdiff 6= 0 (Average daily high tem-
perature in January 1, 1968 is different than the
average daily high temperature in January, 2008
in the continental US.) (c) Independence: loca-
tions are random and represent less than 10% of
all possible locations in the US. We are not given
the distribution to check the skew. In prac-
tice, we would ask to see the data to check this
condition, but here we will move forward under
the assumption that it is not strongly skewed.
(d) T = 1.60, df = 51 − 1 = 50. → p-value be-
tween 0.1, 0.2 (two tails!). (e) Since the p-value
> α (since not given use 0.05), fail to reject
H0. The data do not provide strong evidence of
a temperature change in the continental US on
the two dates. (f) Type 2, since we may have
incorrectly failed to reject H0. There may be
an increase, but we were unable to detect it.
(g) Yes, since we failed to reject H0, which had
a null value of 0.

4.11 (a) (-0.28, 2.48). (b) We are 95% con-
fident that the average daily high on January
1, 2008 in the continental US was 0.24 degrees
lower to 2.44 degrees higher than the average
daily high on January 1, 1968. (c) No, since 0
is included in the interval.

4.13 (a) Each of the 36 mothers is related to
exactly one of the 36 fathers (and vice-versa),
so there is a special correspondence between
the mothers and fathers. (b) H0 : µdiff = 0.
HA : µdiff 6= 0. Independence: random sample
from less than 10% of population. The skew of
the differences is, at worst, slight. T = 2.72,
df = 36 − 1 = 35 → p-value ≈ 0.01. Since p-
value < 0.05, reject H0. The data provide strong
evidence that the average IQ scores of mothers
and fathers of gifted children are different, and
the data indicate that mothers’ scores are higher
than fathers’ scores for the parents of gifted chil-
dren.

4.15 Independence: Random samples that are
less than 10% of the population. In practice,
we’d ask for the data to check the skew (which

is not provided), but here we will move forward
under the assumption that the skew is not ex-
treme (there is some leeway in the skew for such
large samples). Use t?999 ≈ 1.65. 90% CI: (0.16,
5.84). We are 90% confident that the average
score in 2008 was 0.16 to 5.84 points higher than
the average score in 2004.

4.17 (a) H0 : µ2008 = µ2004 → µ2004−µ2008 =
0 (Average math score in 2008 is equal to aver-
age math score in 2004.) HA : µ2008 6= µ2004 →
µ2004−µ2008 6= 0 (Average math score in 2008 is
different than average math score in 2004.) Con-
ditions necessary for inference were checked in
Exercise 4.15. T = −1.74, df = 999 → p-value
between 0.05, 0.10. Since the p-value < α, re-
ject H0. The data provide strong evidence that
the average math score for 13 year old students
has changed between 2004 and 2008. (b) Yes, a
Type 1 error is possible. We rejected H0, but it
is possible H0 is actually true. (c) No, since we
rejected H0 in part (a).

4.19 (a) We are 95% confident that those on
the Paleo diet lose 0.891 pounds less to 4.891
pounds more than those in the control group.
(b) No. The value representing no difference
between the diets, 0, is included in the con-
fidence interval. (c) The change would have
shifted the confidence interval by 1 pound, yield-
ing CI = (0.109, 5.891), which does not include
0. Had we observed this result, we would have
rejected H0.

4.21 The independence condition is satisfied.
Almost any degree of skew is reasonable with
such large samples. Compute the joint SE:√
SE2

M + SE2
W = 0.114. The 95% CI: (-11.32,

-10.88). We are 95% confident that the average
body fat percentage in men is 11.32% to 10.88%
lower than the average body fat percentage in
women.

4.23 No, he should not move forward with the
test since the distributions of total personal in-
come are very strongly skewed. When sample
sizes are large, we can be a bit lenient with skew.
However, such strong skew observed in this exer-
cise would require somewhat large sample sizes,
somewhat higher than 30.

4.25 (a) These data are paired. For example,
the Friday the 13th in say, September 1991,
would probably be more similar to the Fri-
day the 6th in September 1991 than to Fri-
day the 6th in another month or year. (b) Let
µdiff = µsixth − µthirteenth. H0 : µdiff = 0.
HA : µdiff 6= 0. (c) Independence: The months
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selected are not random. However, if we think
these dates are roughly equivalent to a simple
random sample of all such Friday 6th/13th date
pairs, then independence is reasonable. To pro-
ceed, we must make this strong assumption,
though we should note this assumption in any
reported results. With fewer than 10 observa-
tions, we use the t distribution to model the
sample mean. The normal probability plot of
the differences shows an approximately straight
line. There isn’t a clear reason why this distri-
bution would be skewed, and since the normal
quantile plot looks reasonable, we can mark this
condition as reasonably satisfied. (d) T = 4.94
for df = 10− 1 = 9 → p-value < 0.01. (e) Since
p-value < 0.05, reject H0. The data provide
strong evidence that the average number of cars
at the intersection is higher on Friday the 6th

than on Friday the 13th. (We might believe
this intersection is representative of all roads,
i.e. there is higher traffic on Friday the 6th rel-
ative to Friday the 13th. However, we should
be cautious of the required assumption for such
a generalization.) (f) If the average number of
cars passing the intersection actually was the
same on Friday the 6th and 13th, then the prob-
ability that we would observe a test statistic so
far from zero is less than 0.01. (g) We might
have made a Type 1 error, i.e. incorrectly re-
jected the null hypothesis.

4.27 (a) H0 : µdiff = 0. HA : µdiff 6= 0.
T = −2.71. df = 5. 0.02 < p-value < 0.05.
Since p-value < 0.05, reject H0. The data pro-
vide strong evidence that the average number of
traffic accident related emergency room admis-
sions are different between Friday the 6th and
Friday the 13th. Furthermore, the data indicate
that the direction of that difference is that ac-
cidents are lower on Friday the 6th relative to
Friday the 13th. (b) (-6.49, -0.17). (c) This is
an observational study, not an experiment, so
we cannot so easily infer a causal intervention
implied by this statement. It is true that there
is a difference. However, for example, this does
not mean that a responsible adult going out on
Friday the 13th has a higher chance of harm than
on any other night.

4.29 (a) Chicken fed linseed weighed an aver-
age of 218.75 grams while those fed horsebean
weighed an average of 160.20 grams. Both dis-
tributions are relatively symmetric with no ap-
parent outliers. There is more variability in the
weights of chicken fed linseed. (b) H0 : µls =

µhb. HA : µls 6= µhb. We leave the conditions to
you to consider. T = 3.02, df = min(11, 9) = 9
→ 0.01 < p-value < 0.02. Since p-value < 0.05,
reject H0. The data provide strong evidence
that there is a significant difference between the
average weights of chickens that were fed linseed
and horsebean. (c) Type 1, since we rejected
H0. (d) Yes, since p-value > 0.01, we would
have failed to reject H0.

4.31 H0 : µC = µS . HA : µC 6= µS . T = 3.48,
df = 11→ p-value < 0.01. Since p-value < 0.05,
reject H0. The data provide strong evidence
that the average weight of chickens that were
fed casein is different than the average weight
of chickens that were fed soybean (with weights
from casein being higher). Since this is a ran-
domized experiment, the observed difference are
can be attributed to the diet.

4.33 H0 : µT = µC . HA : µT 6= µC . T = 2.24,
df = 21 → 0.02 < p-value < 0.05. Since p-
value < 0.05, reject H0. The data provide strong
evidence that the average food consumption by
the patients in the treatment and control groups
are different. Furthermore, the data indicate pa-
tients in the distracted eating (treatment) group
consume more food than patients in the control
group.

4.35 Let µdiff = µpre − µpost. H0 : µdiff = 0:
Treatment has no effect. HA : µdiff > 0: Treat-
ment is effective in reducing Pd T scores, the
average pre-treatment score is higher than the
average post-treatment score. Note that the
reported values are pre minus post, so we are
looking for a positive difference, which would
correspond to a reduction in the psychopathic
deviant T score. Conditions are checked as
follows. Independence: The subjects are ran-
domly assigned to treatments, so the patients
in each group are independent. All three sam-
ple sizes are smaller than 30, so we use t
tests.Distributions of differences are somewhat
skewed. The sample sizes are small, so we can-
not reliably relax this assumption. (We will pro-
ceed, but we would not report the results of this
specific analysis, at least for treatment group
1.) For all three groups: df = 13. T1 = 1.89
(0.025 < p-value < 0.05), T2 = 1.35 (p-value =
0.10), T3 = −1.40 (p-value > 0.10). The only
significant test reduction is found in Treatment
1, however, we had earlier noted that this re-
sult might not be reliable due to the skew in
the distribution. Note that the calculation of
the p-value for Treatment 3 was unnecessary:
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the sample mean indicated a increase in Pd T
scores under this treatment (as opposed to a de-
crease, which was the result of interest). That
is, we could tell without formally completing the
hypothesis test that the p-value would be large
for this treatment group.

4.37 H0: µ1 = µ2 = · · · = µ6. HA: The aver-
age weight varies across some (or all) groups.
Independence: Chicks are randomly assigned
to feed types (presumably kept separate from
one another), therefore independence of obser-
vations is reasonable. Approx. normal: the
distributions of weights within each feed type
appear to be fairly symmetric. Constant vari-
ance: Based on the side-by-side box plots, the
constant variance assumption appears to be rea-
sonable. There are differences in the actual com-
puted standard deviations, but these might be
due to chance as these are quite small samples.
F5,65 = 15.36 and the p-value is approximately
0. With such a small p-value, we reject H0. The
data provide convincing evidence that the aver-
age weight of chicks varies across some (or all)
feed supplement groups.

4.39 (a) H0: The population mean of MET
for each group is equal to the others. HA: At
least one pair of means is different. (b) Inde-
pendence: We don’t have any information on
how the data were collected, so we cannot as-
sess independence. To proceed, we must assume
the subjects in each group are independent. In
practice, we would inquire for more details.
Approx. normal: The data are bound below
by zero and the standard deviations are larger
than the means, indicating very strong strong
skew. However, since the sample sizes are ex-
tremely large, even extreme skew is acceptable.
Constant variance: This condition is sufficiently
met, as the standard deviations are reasonably
consistent across groups. (c) See below, with
the last column omitted:

Df Sum Sq Mean Sq F value

coffee 4 10508 2627 5.2
Residuals 50734 25564819 504
Total 50738 25575327

(d) Since p-value is very small, reject H0. The
data provide convincing evidence that the av-
erage MET differs between at least one pair of
groups.

4.41 (a) H0: Average GPA is the same for all
majors. HA: At least one pair of means are dif-
ferent. (b) Since p-value > 0.05, fail to reject
H0. The data do not provide convincing evi-
dence of a difference between the average GPAs

across three groups of majors. (c) The total de-
grees of freedom is 195 + 2 = 197, so the sample
size is 197 + 1 = 198.

4.43 (a) False. As the number of groups in-
creases, so does the number of comparisons and
hence the modified significance level decreases.
(b) True. (c) True. (d) False. We need obser-
vations to be independent regardless of sample
size.

4.45 (a) H0: Average score difference is the
same for all treatments. HA: At least one pair
of means are different. (b) We should check
conditions. If we look back to the earlier ex-
ercise, we will see that the patients were ran-
domized, so independence is satisfied. There
are some minor concerns about skew, especially
with the third group, though this may be ac-
ceptable. The standard deviations across the
groups are reasonably similar. Since the p-value
is less than 0.05, reject H0. The data provide
convincing evidence of a difference between the
average reduction in score among treatments.
(c) We determined that at least two means
are different in part (b), so we now conduct
K = 3 × 2/2 = 3 pairwise t tests that each use
α = 0.05/3 = 0.0167 for a significance level. Use
the following hypotheses for each pairwise test.
H0: The two means are equal. HA: The two
means are different. The sample sizes are equal
and we use the pooled SD, so we can compute
SE = 3.7 with the pooled df = 39. The p-value
only for Trmt 1 vs. Trmt 3 may be statistically
significant: 0.01 < p-value < 0.02. Since we
cannot tell, we should use a computer to get the
p-value, 0.015, which is statistically significant
for the adjusted significance level. That is, we
have identified Treatment 1 and Treatment 3 as
having different effects. Checking the other two
comparisons, the differences are not statistically
significant.

4.47 (a) The point estimate is the sample stan-
dard deviation, which is in the table: 9.41 cm.
(b) We were told we may assume the data are
from a simple random sample, which ensures in-
dependence. There are 507 data points (indi-
viduals), satisfying the ≥ 30 sample size condi-
tion. Lastly, the bootstrap distribution appears
to be nearly normal. Therefore, the bootstrap
approach is reasonable. (c) A 95% confidence
interval may be constructed using the 2.5th and
97.5th percentiles, which are 8.88 and 9.91, re-
spectively. That is, we are 95% confident that
the true standard deviation of the population’s
height is between 8.88 and 9.91 centimeters.
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5 Introduction to linear regression

5.1 (a) The residual plot will show randomly
distributed residuals around 0. The variance is
also approximately constant. (b) The residuals
will show a fan shape, with higher variability for
smaller x. There will also be many points on the
right above the line. There is trouble with the
model being fit here.

5.3 (a) Strong relationship, but a straight line
would not fit the data. (b) Strong relationship,
and a linear fit would be reasonable. (c) Weak
relationship, and trying a linear fit would be
reasonable. (d) Moderate relationship, but a
straight line would not fit the data. (e) Strong
relationship, and a linear fit would be reason-
able. (f) Weak relationship, and trying a linear
fit would be reasonable.

5.5 (a) Exam 2 since there is less of a scatter in
the plot of final exam grade versus exam 2. No-
tice that the relationship between Exam 1 and
the Final Exam appears to be slightly nonlinear.
(b) Exam 2 and the final are relatively close to
each other chronologically, or Exam 2 may be
cumulative so has greater similarities in mate-
rial to the final exam. Answers may vary for
part (b).

5.7 (a) R = −0.7 → (4). (b) R = 0.45 → (3).
(c) R = 0.06 → (1). (d) R = 0.92 → (2).

5.9 (a) The relationship is positive, weak, and
possibly linear. However, there do appear to
be some anomalous observations along the left
where several students have the same height
that is notably far from the cloud of the other
points. Additionally, there are many students
who appear not to have driven a car, and they
are represented by a set of points along the bot-
tom of the scatterplot. (b) There is no obvious
explanation why simply being tall should lead a
person to drive faster. However, one confound-
ing factor is gender. Males tend to be taller
than females on average, and personal experi-
ences (anecdotal) may suggest they drive faster.
If we were to follow-up on this suspicion, we
would find that sociological studies confirm this
suspicion. (c) Males are taller on average and
they drive faster. The gender variable is indeed
an important confounding variable.

5.11 (a) There is a somewhat weak, positive,
possibly linear relationship between the distance
traveled and travel time. There is clustering
near the lower left corner that we should take

special note of. (b) Changing the units will not
change the form, direction or strength of the re-
lationship between the two variables. If longer
distances measured in miles are associated with
longer travel time measured in minutes, longer
distances measured in kilometers will be associ-
ated with longer travel time measured in hours.
(c) Changing units doesn’t affect correlation:
R = 0.636.

5.13 (a) There is a moderate, positive, and
linear relationship between shoulder girth and
height. (b) Changing the units, even if just for
one of the variables, will not change the form,
direction or strength of the relationship between
the two variables.

5.15 In each part, we may write the husband
ages as a linear function of the wife ages: (a)
ageH = ageW + 3; (b) ageH = ageW − 2; and
(c) ageH = 2×ageW . Therefore, the correlation
will be exactly 1 in all three parts. An alterna-
tive way to gain insight into this solution is to
create a mock data set, such as a data set of
5 women with ages 26, 27, 28, 29, and 30 (or
some other set of ages). Then, based on the de-
scription, say for part (a), we can compute their
husbands’ ages as 29, 30, 31, 32, and 33. We can
plot these points to see they fall on a straight
line, and they always will. The same approach
can be applied to the other parts as well.

5.17 (a) There is a positive, very strong, linear
association between the number of tourists and
spending. (b) Explanatory: number of tourists
(in thousands). Response: spending (in millions
of US dollars). (c) We can predict spending for a
given number of tourists using a regression line.
This may be useful information for determin-
ing how much the country may want to spend
in advertising abroad, or to forecast expected
revenues from tourism. (d) Even though the re-
lationship appears linear in the scatterplot, the
residual plot actually shows a nonlinear relation-
ship. This is not a contradiction: residual plots
can show divergences from linearity that can be
difficult to see in a scatterplot. A simple linear
model is inadequate for modeling these data. It
is also important to consider that these data are
observed sequentially, which means there may
be a hidden structure that it is not evident in
the current data but that is important to con-
sider.
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5.19 (a) First calculate the slope: b1 = R ×
sy/sx = 0.636 × 113/99 = 0.726. Next, make
use of the fact that the regression line passes
through the point (x̄, ȳ): ȳ = b0 + b1 × x̄. Plug
in x̄, ȳ, and b1, and solve for b0: 51. Solution:̂travel time = 51 + 0.726 × distance. (b) b1:
For each additional mile in distance, the model
predicts an additional 0.726 minutes in travel
time. b0: When the distance traveled is 0 miles,
the travel time is expected to be 51 minutes. It
does not make sense to have a travel distance
of 0 miles in this context. Here, the y-intercept
serves only to adjust the height of the line and
is meaningless by itself. (c) R2 = 0.6362 = 0.40.
About 40% of the variability in travel time is
accounted for by the model, i.e. explained by
the distance traveled. (d) ̂travel time = 51 +
0.726 × distance = 51 + 0.726 × 103 ≈ 126
minutes. (Note: we should be cautious in our
predictions with this model since we have not
yet evaluated whether it is a well-fit model.)
(e) ei = yi − ŷi = 168 − 126 = 42 minutes. A
positive residual means that the model underes-
timates the travel time. (f) No, this calculation
would require extrapolation.

5.21 The relationship between the variables is
somewhat linear. However, there are two appar-
ent outliers. The residuals do not show a ran-
dom scatter around 0. A simple linear model
may not be appropriate for these data, and we
should investigate the two outliers.

5.23 (a)
√
R2 = 0.849. Since the trend is

negative, R is also negative: R = −0.849.
(b) b0 = 55.34. b1 = −0.537. (c) For a neigh-
borhood with 0% reduced-fee lunch, we would
expect 55.34% of the bike riders to wear hel-
mets. (d) For every additional percentage point
of reduced fee lunches in a neighborhood, we
would expect 0.537% fewer kids to be wearing
helmets. (e) ŷ = 40× (−0.537) + 55.34 = 33.86,
e = 40 − ŷ = 6.14. There are 6.14% more bike
riders wearing helmets than predicted by the re-
gression model in this neighborhood.

5.25 (a) The outlier is in the upper-left corner.
Since it is horizontally far from the center of the
data, it is a point with high leverage. Since the
slope of the regression line would be very differ-
ent if fit without this point, it is also an influen-
tial point. (b) The outlier is located in the lower-
left corner. It is horizontally far from the rest
of the data, so it is a high-leverage point. The
line again would look notably different if the fit
excluded this point, meaning it the outlier is in-

fluential. (c) The outlier is in the upper-middle
of the plot. Since it is near the horizontal center
of the data, it is not a high-leverage point. This
means it also will have little or no influence on
the slope of the regression line.

5.27 (a) There is a negative, moderate-to-
strong, somewhat linear relationship between
percent of families who own their home and the
percent of the population living in urban areas
in 2010. There is one outlier: a state where
100% of the population is urban. The variability
in the percent of homeownership also increases
as we move from left to right in the plot. (b) The
outlier is located in the bottom right corner, hor-
izontally far from the center of the other points,
so it is a point with high leverage. It is an influ-
ential point since excluding this point from the
analysis would greatly affect the slope of the re-
gression line.

5.29 (a) The relationship is positive, moderate-
to-strong, and linear. There are a few out-
liers but no points that appear to be influen-
tial. (b) ̂weight = −105.0113 + 1.0176×height.
Slope: For each additional centimeter in height,
the model predicts the average weight to be
1.0176 additional kilograms (about 2.2 pounds).
Intercept: People who are 0 centimeters tall are
expected to weigh -105.0113 kilograms. This
is obviously not possible. Here, the y-intercept
serves only to adjust the height of the line and
is meaningless by itself. (c) H0: The true slope
coefficient of height is zero (β1 = 0). H0: The
true slope coefficient of height is greater than
zero (β1 > 0). A two-sided test would also be
acceptable for this application. The p-value for
the two-sided alternative hypothesis (β1 6= 0)
is incredibly small, so the p-value for the one-
sided hypothesis will be even smaller. That
is, we reject H0. The data provide convincing
evidence that height and weight are positively
correlated. The true slope parameter is indeed
greater than 0. (d) R2 = 0.722 = 0.52. Approx-
imately 52% of the variability in weight can be
explained by the height of individuals.

5.31 (a) H0: β1 = 0. HA: β1 > 0. A two-sided
test would also be acceptable for this applica-
tion. The p-value, as reported in the table, is
incredibly small. Thus, for a one-sided test, the
p-value will also be incredibly small, and we re-
ject H0. The data provide convincing evidence
that wives’ and husbands’ heights are positively
correlated. (b) ̂heightW = 43.5755 + 0.2863 ×
heightH . (c) Slope: For each additional inch
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in husband’s height, the average wife’s height is
expected to be an additional 0.2863 inches on
average. Intercept: Men who are 0 inches tall
are expected to have wives who are, on average,
43.5755 inches tall. The intercept here is mean-
ingless, and it serves only to adjust the height
of the line. (d) The slope is positive, so R must
also be positive. R =

√
0.09 = 0.30. (e) 63.2612.

Since R2 is low, the prediction based on this re-

gression model is not very reliable. (f) No, we
should avoid extrapolating.

5.33 (a) 25.75. (b) H0: β1 = 0. HA: β1 6= 0.
A one-sided test also may be reasonable for this
application. T = 2.23, df = 23 → p-value be-
tween 0.02 and 0.05. So we reject H0. There is
an association between gestational age and head
circumference. We can also say that the associ-
aation is positive.

6 Multiple and logistic regression

6.1 (a) ̂baby weight = 123.05 − 8.94 × smoke
(b) The estimated body weight of babies born
to smoking mothers is 8.94 ounces lower than
babies born to non-smoking mothers. Smoker:
123.05− 8.94× 1 = 114.11 ounces. Non-smoker:
123.05 − 8.94 × 0 = 123.05 ounces. (c) H0:
β1 = 0. HA: β1 6= 0. T = −8.65, and the
p-value is approximately 0. Since the p-value
is very small, we reject H0. The data provide
strong evidence that the true slope parameter is
different than 0 and that there is an association
between birth weight and smoking. Further-
more, having rejected H0, we can conclude that
smoking is associated with lower birth weights.

6.3 (a) ̂baby weight = −80.41 + 0.44 ×
gestation − 3.33 × parity − 0.01 × age +
1.15 × height + 0.05 × weight − 8.40 × smoke.
(b) βgestation: The model predicts a 0.44 ounce
increase in the birth weight of the baby for each
additional day of pregnancy, all else held con-
stant. βage: The model predicts a 0.01 ounce
decrease in the birth weight of the baby for each
additional year in mother’s age, all else held con-
stant. (c) Parity might be correlated with one
of the other variables in the model, which com-
plicates model estimation. (d) ̂baby weight =
120.58. e = 120 − 120.58 = −0.58. The
model over-predicts this baby’s birth weight.
(e) R2 = 0.2504. R2

adj = 0.2468.

6.5 (a) (-0.32, 0.16). We are 95% confident that
male students on average have GPAs 0.32 points
lower to 0.16 points higher than females when
controlling for the other variables in the model.
(b) Yes, since the p-value is larger than 0.05 in
all cases (not including the intercept).

6.7 (a) There is not a significant relationship
between the age of the mother. We should con-
sider removing this variable from the model.
(b) All other variables are statistically signifi-
cant at the 5% level.

6.9 Based on the p-value alone, either gestation
or smoke should be added to the model first.
However, since the adjusted R2 for the model
with gestation is higher, it would be preferable
to add gestation in the first step of the forward-
selection algorithm. (Other explanations are
possible. For instance, it would be reasonable
to only use the adjusted R2.)

6.11 Nearly normal residuals: The normal
probability plot shows a nearly normal distri-
bution of the residuals, however, there are some
minor irregularities at the tails. With a data set
so large, these would not be a concern.
Constant variability of residuals: The scatter-
plot of the residuals versus the fitted values does
not show any overall structure. However, val-
ues that have very low or very high fitted val-
ues appear to also have somewhat larger out-
liers. In addition, the residuals do appear to
have constant variability between the two parity
and smoking status groups, though these items
are relatively minor.
Independent residuals: The scatterplot of resid-
uals versus the order of data collection shows a
random scatter, suggesting that there is no ap-
parent structures related to the order the data
were collected.
Linear relationships between the response vari-
able and numerical explanatory variables: The
residuals vs. height and weight of mother are
randomly distributed around 0. The residuals
vs. length of gestation plot also does not show
any clear or strong remaining structures, with
the possible exception of very short or long ges-
tations. The rest of the residuals do appear to
be randomly distributed around 0.
All concerns raised here are relatively mild.
There are some outliers, but there is so much
data that the influence of such observations will
be minor.
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6.13 (a) There are a few potential outliers, e.g.
on the left in the total length variable, but
nothing that will be of serious concern in a data
set this large. (b) When coefficient estimates
are sensitive to which variables are included in
the model, this typically indicates that some
variables are collinear. For example, a pos-
sum’s gender may be related to its head length,
which would explain why the coefficient (and p-
value) for sex male changed when we removed
the head length variable. Likewise, a possum’s
skull width is likely to be related to its head
length, probably even much more closely related
than the head length was to gender.

6.15 (a) The logistic model relating p̂i to the

predictors may be written as log
(

p̂i
1−p̂i

)
=

33.5095 − 1.4207 × sex malei − 0.2787 ×
skull widthi + 0.5687 × total lengthi. Only
total length has a positive association with a
possum being from Victoria. (b) p̂ = 0.0062.
While the probability is very near zero, we have
not run diagnostics on the model. We might
also be a little skeptical that the model will re-
main accurate for a possum found in a US zoo.
For example, perhaps the zoo selected a possum
with specific characteristics but only looked in
one region. On the other hand, it is encour-
aging that the possum was caught in the wild.
(Answers regarding the reliability of the model
probability will vary.)



Appendix C

Distribution tables

C.1 Normal Probability Table

The area to the left of Z represents the percentile of the observation. The normal probability table
always lists percentiles.

negative Z

Y

positive Z

To find the area to the right, calculate 1 minus the area to the left.

1.0000 0.6664 = 0.3336

For additional details about working with the normal distribution and the normal probability
table, see Section 2.6, which starts on page 85.
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negative Z

Second decimal place of Z
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 Z

0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 −3.4
0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 −3.3
0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 −3.2
0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 −3.1
0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0013 −3.0

0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 −2.9
0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 −2.8
0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 −2.7
0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 −2.6
0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 −2.5

0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 −2.4
0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 −2.3
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 −2.2
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 −2.1
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 −2.0

0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 −1.9
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 −1.8
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 −1.7
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 −1.6
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 −1.5

0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 −1.4
0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 −1.3
0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 −1.2
0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 −1.1
0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 −1.0

0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 −0.9
0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 −0.8
0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 −0.7
0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 −0.6
0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 −0.5

0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 −0.4
0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 −0.3
0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 −0.2
0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 −0.1
0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 −0.0
∗For Z ≤ −3.50, the probability is less than or equal to 0.0002.
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Y
positive Z

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
∗For Z ≥ 3.50, the probability is greater than or equal to 0.9998.
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C.2 t Distribution Table

−3 −2 −1 0 1 2 3

One tail

−3 −2 −1 0 1 2 3

One tail

−3 −2 −1 0 1 2 3

Two tails

Figure C.1: Three t distributions.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75
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one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 31 1.31 1.70 2.04 2.45 2.74
32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70

41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68

60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65
80 1.29 1.66 1.99 2.37 2.64
90 1.29 1.66 1.99 2.37 2.63

100 1.29 1.66 1.98 2.36 2.63
150 1.29 1.66 1.98 2.35 2.61
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59

∞ 1.28 1.65 1.96 2.33 2.58
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C.3 Chi-Square Probability Table

0 5 10 15

Figure C.2: Areas in the chi-square table always refer to the right tail.

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001

df 2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

8 9.52 11.03 13.36 15.51 18.17 20.09 21.95 26.12

9 10.66 12.24 14.68 16.92 19.68 21.67 23.59 27.88

10 11.78 13.44 15.99 18.31 21.16 23.21 25.19 29.59

11 12.90 14.63 17.28 19.68 22.62 24.72 26.76 31.26

12 14.01 15.81 18.55 21.03 24.05 26.22 28.30 32.91

13 15.12 16.98 19.81 22.36 25.47 27.69 29.82 34.53

14 16.22 18.15 21.06 23.68 26.87 29.14 31.32 36.12

15 17.32 19.31 22.31 25.00 28.26 30.58 32.80 37.70

16 18.42 20.47 23.54 26.30 29.63 32.00 34.27 39.25

17 19.51 21.61 24.77 27.59 31.00 33.41 35.72 40.79

18 20.60 22.76 25.99 28.87 32.35 34.81 37.16 42.31

19 21.69 23.90 27.20 30.14 33.69 36.19 38.58 43.82

20 22.77 25.04 28.41 31.41 35.02 37.57 40.00 45.31

25 28.17 30.68 34.38 37.65 41.57 44.31 46.93 52.62

30 33.53 36.25 40.26 43.77 47.96 50.89 53.67 59.70

40 44.16 47.27 51.81 55.76 60.44 63.69 66.77 73.40

50 54.72 58.16 63.17 67.50 72.61 76.15 79.49 86.66



Index

t distribution, 166–169
95% confidence interval, 103

Ac, 301
Addition Rule, 297
adjusted R2 (R2

adj), 266, 265–266
alternative hypothesis, 68
alternative hypothesis (HA), 68
analysis of variance (ANOVA), 184, 184–195,

243
anecdotal evidence, 9
associated, 8

backward-elimination, 268
bar plot, 35

segmented bar plot, 38
bias, 11
blind, 19
blocking, 17
blocks, 17
Bonferroni correction, 194
bootstrap distribution, 196
bootstrap sample, 196
box plot, 28

side-by-side box plot, 40

case, 4
categorical, 6
Central Limit Theorem, 82

difference in proportions, 82
proportion, 82

chi-square distribution, 136
chi-square table, 137
cohort, 13
collections, 298
collinear, 265
column totals, 35
complement, 301
condition, 308
conditional probability, 308, 308–310
confidence interval, 83, 102, 102–107, 275

confidence level, 105–106
interpretation, 107

confident, 103
confirmation bias, 73
confounder, 14
confounding factor, 14
confounding variable, 14
contingency table, 35

column proportion, 36
column totals, 35
row proportions, 36
row totals, 35

continuous, 6
control, 17
control group, 2, 19
convenience sample, 11
correlation, 226, 226–227

data, 1
approval ratings, 148–149
baby smoke, 179–181
cancer in dogs, herbicide, 131–133
cars, 20
Congress approval rating, 128
county, 4–8, 12, 32–35, 40–42
CPR and blood thinner, 74–75
discrimination, 61–65
dolphins and mercury, 169–171
drug use, 306–310
email, 35–40, 275–284, 298, 300
email50, 3–4, 20–31
health care, 129–130
mario kart, 261–275
medical consultant, 77–79
midterm elections, 238–242
MLB batting, 186–191
possum, 221–225
racial make-up of jury, 134–136, 138–140
S&P500 stock data, 141–144
search algorithm, 144–148
smallpox, 310–313
stem cells, heart function, 176–178
stroke, 1–3, 6
supreme court, 124–125
textbooks, 173–176
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two exam comparison, 181–183
white fish and mercury, 172

data density, 23
data fishing, 187
data matrix, 4
data snooping, 187
deck of cards, 299
degrees of freedom (df)

t distribution, 166
chi-square, 136
regression, 266

dependent, 8, 12
deviation, 25
df, see degrees of freedom (df)
discrete, 6
disjoint, 297, 297–298
distribution, 21

normal, 85
dot plot, 21
double-blind, 19

event, 298, 298
E(X), 316
expectation, 316–317
expected value, 316
experiment, 13, 17
explanatory, 12
extrapolation, 233

F test, 189
face card, 299
failure, 123
first quartile, 28
forward-selection, 269
frequency table, 35
full model, 266

gambler’s fallacy, 312
General Addition Rule, 300
General Multiplication Rule, 311
generalized linear model, 275
Greek

beta (β), 219
mu (µ), 22
mu (µ), 317
sigma (σ), 26
sigma (σ), 318

high leverage, 236
histogram, 23
hollow histogram, 40
hypothesis test, 63, 68
hypothesis testing

decision errors, 72–73

p-value, 70
significance level, 71, 73
statistically significant, 71
two tails, 73–77

independent, 8, 12, 304
indicator variable, 234, 261, 276
influential point, 236
intensity map, 32, 32–35
interquartile range, 28, 29
IQR, 28

joint probability, 307, 307–308

key, 123

Law of Large Numbers, 296
least squares criterion, 229
least squares line, 229
least squares regression, 227–231

extrapolation, 232–233
interpreting parameters, 232
R-squared (R2), 233, 233–234

levels, 6
linear combination, 320
linear regression, 219
logistic regression, 275, 275–284
logit transformation, 277
long tail, 24
lurking variable, 14

margin of error, 106, 127–128
marginal probability, 307, 307–308
mean, 21

average, 21
weighted mean, 23

mean square between groups (MSG), 188
mean square error (MSE), 188
median, 28
midterm election, 238
modality

bimodal, 24
multimodal, 24
unimodal, 24

mode, 24
model selection, 266–270
mosaic plot, 38
multiple comparisons, 194
multiple regression, 235, 263, 261–275

model assumptions, 271–275
Multiplication Rule, 305
multistage sampling, 16
mutually exclusive, 297, 297–298

natural splines, 281
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negative association, 8
nominal, 6
non-response, 11
non-response bias, 11
normal curve, 85
normal distribution, 85–98
normal model, 85
normal probability plot, 95
normal probability table, 88
null distribution, 75, 76
null hypothesis, 68
null hypothesis (H0), 68
null value, 78
numerical, 6

observational study, 13
observational unit, 4
one-sided hypothesis tests, 74
ordinal, 6
outcome, 296
outlier, 29

p-value, 70
paired, 173
paired data, 173–176
parameter, 78, 86, 219
patients, 19
percentile, 28, 88
permutation test, 63
pie chart, 40
placebo, 13, 19
placebo effect, 19
point estimate, 22, 62, 71, 78

difference of means, 176–178
difference of proportions, 128
single proportion, 124

point-slope, 230
pooled estimate, 133
pooled standard deviation, 184
population, 9, 9–12
positive association, 8
predictor, 219
primary, 313
probability, 296, 295–296
probability distribution, 300
probability sample, see sample
prosecutor’s fallacy, 188
prospective study, 14

Q1, 28
Q3, 28
quantile-quantile plot, 95
quartile

first quartile, 28

third quartile, 28

random process, 296, 296–297
random variable, 316, 315–323
randomization, 63
randomized experiment, 13, 17
relative frequency table, 35
replicate, 17
representative, 11
residual, 191, 223, 223–226
residual plot, 225
response, 12
retrospective studies, 14
robust estimates, 30
row totals, 35

S, 301
s, 26
sample, 9, 9–12

cluster sample, 16
convenience sample, 11
non-response, 11
non-response bias, 11
random sample, 10–12
simple random sampling, 14
strata, 16
stratified sampling, 16

sample space, 301
sample statistic, 30
sampling with replacement, 196
scatterplot, 7, 20
secondary, 313
sets, 298
side-by-side box plot, 40
significance level, 71, 71, 73

multiple comparisons, 191–195
simple random sample, 11
simulation, 63
skew

example: extreme, 31
example: moderate, 165
example: slight to moderate, 42
example: strong, 84, 174, 179
example: very strong, 24, 96
left skewed, 23
long tail, 24
right skewed, 23
strong skew, 29
symmetric, 23
tail, 23

standard deviation, 26, 317
standard error

difference in means, 178
difference in proportions, 129
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single proportion, 124
standard error (SE), 99
standard normal distribution, 85
statistically significant, 67, 71
stepwise, 268
strata, 16
study participants, 19
success, 67, 123
success-failure condition, 124
suits, 299
sum of squared errors (SSE), 189
sum of squares between groups, 188
sum of squares total (SST ), 188
summary statistic, 3, 7, 30
symmetric, 23

T score, 173
t table, 167
table proportions, 307
tail, 23
test statistic, 70
the outcome of interest, 308
third quartile, 28
time series, 238, 272
transformation, 31
treatment group, 2, 19
tree diagram, 313, 313
trial, 123
two-sided hypothesis tests, 74
Type 1 Error, 72
Type 2 Error, 72

unit of observation, 4

variability, 25, 28
variable, 4
variance, 26, 317
Venn diagrams, 299
volunteers, 19

weighted mean, 23
whiskers, 29

Z, 87
Z score, 87
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